Literate Programming and the “Spaniel” Method

Nick Hatzigeorgiu* Apostolos Syropoulos?

Abstract

Software has to be well structured and well documented in order to be reusable and maintain-
able. Literate programs have both properties. Unfortunately, even today many programmers
write program without proper documentation. We propose a technique by which one can rela-
tively easily transform a well structured program into a literate one. We exemplify the technique
by means of an example and we conclude with the presentation of some related work and ideas.

1 Introduction

A decade ago the second author was programming the compiler of a simple Pascal-like language,
as part of a graduate student project. In the final stages of the program development a problem
surfaced concerning type checking and after weeks of debugging it seemed to be untractable. So he
decided to contact an expert, namely Prof. W. W. Waite, in order to get some help. Prof. Waite
responded to him and he described a weird debugging technique:

As is often the case with baffling errors it is really quite simple. We tend to fizate on
incorrect assumptions, and overlook the obvious, surprisingly frequently. I have found
that one way to break through such barriers is to use the “Spaniel” method: Carefully
ezplain the program to your dog. Since the dog knows nothing of programming, you must
Justify every statement you make. In the process you will often discover the mistake. (I
know it sounds weird, but it really does work!) [Wai88]

Prof. Donald E. Knuth invented literate programming [Knu92] while preparing version 2 of his
TEX program. Literate programming is a program development methodology. A literate program
consists of intermixed chunks of code and text. The text serves as an explanation of the program-
ming code. In its initial from, a preprocessor, weave, produces a TEX source file which in turn can
be typeseted by TEX. Another preprocessor, tangle, produces an unformatted Pascal source file.
A literate program is called a web, and hence the names of the preprocessors. The main drawback
of these two programs is that they are language oriented, i.e., one can use them only if he/she pro-
grams in Pascal and uses TEX as his/her typesetting engine. This problem initiated various efforts
to create language independent tools, the most popular being noweb by Normal Ramsey [Ram94]
and nuweb by Preston Briggs [Bri93]. In particular, noweb, is independent of the typesetting engine
since it is capable to produce plain TEX, KIREX, roff, or HTML output.

Although the benefits of developing programs by employing the literate programming method-
ology have been recognized by many authors, see [CS96, Par96] for a recent account, unfortunately

*Institute of Language and Speech Processing, Xanthi Branch, 8, Vas. Sofias Str., GR-671 00 Xanthi, GREECE,
e-mail: nikos@xanthi.ilsp.gr.

tDepartment of Civil Engineering, Democritus University of Thrace, GR-671 00 Xanthi, GREECE, e-mail:
apostolo@obelix.ee.duth.gr. -

ACM SIGPLAN Notices 52 V. 33(12) December 1998

even today many programmers write programs that don’t have a single line of comments. We
believe that if someone employs the “Spaniel” method it is possible to produce literate programs
from “illiterate” ones. In the next section we propose a simple method by which we can produce
literate programs from “raw” source code; then we demonstrate the method’s usability by means of
a relatively simple example. The last section presents some related work and ideas on the subject.

2 The Methodology

In order to produce a literate program from “raw” source code, one should know how the program
works and what it computes. This means that we should know exactly the structure of the program,
i.e., the various sections that it consists of. For example, a compiler must read the source code,
construct the syntax tree, perform type checking and, finally, produce some sort of code. So, our
first step is to identify the various sections of our code. Each section is usually composed of various
subsections, e.g., when a compiler reads a source file it tokenizes the input lines so that the parser
can construct the syntax tree and perform syntax analysis. Next, each subsection is transformed
into a code chunk, in the sense of literate programming. A reasonable question is: When do we
stop? Obviously, when the code is self-explanatory.

The careful reader may realize that our methodology resembles the structured programming
methodology (top-down program development). Once we have divided our code into reasonably-
sized code chunks, we must write down the text that will explain the code. Certainly, this text
should not be an English version of the operational semantics of the code, e.g., the explanation of
the assignment s=pi*R#*R should not be of the form Here we assign to variable s the value pi*R*R,
as this contributes nothing to the reader’s understanding of the program. The text should explain
the meaning of the command(s) in the program’s context, i.e, what this particular piece of code
achieves. But, what does this mean?

At this point the “Spaniel” method comes into use. We assume that we are the authors of
the code and that we explain our program to a non-programmer who, however, is quite aware of
the nature of the problem the program solves. This means that we will write a short introduction
that will explain the problem and then we will present the way our program tackles the problem,
describing the functionality of each program chunk. In this light an assignment does not simply
assign a value to some variable, but stores an important piece of information to the computers
memory. So, we must explain what this information is about. For example the above assignment
Assigns to variable s the area inside a circle with radius equal to R. Furthermore, how should some-
one treat other constructs, e.g., loops, conditional statements, etc? Each programming construct
is a tool and it must be viewed as such. This means that we are not interested in describing the
way it operates —after all we assume that the reader is familiar with our programming notation—
but what is exactly its contribution in achieving our programming goal.

3 An Example

To demonstrate the above methodology we present a simple Perl script which is used to exem-
plify our methodology. Our simple program is one that computes the day of week for dates after
December 31st, 1752. Here is the “raw” code:

#!/usr/bin/perl

use integer;

$argc = QARGV;

die "Usage: day_of_week dd mm yy\n" if $argc != 3;

53

$day = $ARGV[0];
$month = $ARGV[1];
$year = $ARGV([2];
die "Year is not Gregorian calendar year : $year < 1753 \n"
if $year < 17563 ;
@months = (3%, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31);
die "Illegal month: $month\n" if $month > 12 || $month < 1;
$months[1] = 29 if ($year % 100 == 0 && $year % 400 == 0)
] $year % 4 == 0;
die "Illegal day $day for month $month\n"
if $months[$month-1] < $day ||
$day < 0;
@wday = ("Sun", "Mon", "Tue", "Wed", “Thu", "Fri", "Sat");
$y = $year;
$m = ($month + 10) % 12;
$y-—- if ($m > 10);
$c = int ($y / 100);
$yy = $year % 100;
$z = (int ((26*$m - 2)/10) + $day + $yy + int($yy/4) +
int ($c/4) - 2%$c) 4% 7;
print "$wday[$z]\n";

We now apply the “Spaniel” method in order to derive a literate program from the above code.
A short introduction should explain what the program is about, i.e., it computes the day of week
for a given date. We then identify the various sections of the program. The program gets input,
validates the input and computes the day of the week. Next, we inform the reader that the program
gets its input from the command line in the form of three integers. Then, we explain what kind
of validation we perform (remember that we know how the program operates), i.e., that the year
must be after 1752, the month must be in the range 1...12, etc. And, finally, we describe what
kind of computational algorithm our the program uses. The resulting literate program, writen in
noweb’s style of literate programming, appears on the next page.

The most interesting side-effect is that someone may discover bugs in his/her program he/she
never thought of before, as we surprisingly did! (Compare the above code with the literate program.)
This is the power of the “Spaniel” method: while we try to explain to a non-expert the inner
workings of our code we sometimes see that there might be pitfalls and omissions in what we
considered to be a perfectly working program. Thus, this method helps us not only to get out of
deadlock situations but also to improve our code.

4 Conclusions

This isn’t the first time someone tries to produce some sort of explanation of a computer program.
For example, Gabriel [P.88] describes a system called Yh which was capable of producing expla-
nations of computer programs generated by another specific program (which generates programs
from user specifications). This work was the starting point for the Master’s Thesis [Syr93] of the
second author who tried to generalize Gabriel’s methods.

There has also been an effort (and a lot of related discussions in the comp.programming.literate
newsgroup) to produce literate programs from old code, usually by students of computer science.
Every effort of this kind is valuable both because of its educational value and the possibilities of
finding new improvements to old code. We believe that the “Spaniel” method can be a useful tool
in those efforts. B

54

¢ W\ [2$] Aepag, autad

$1 Y% (o$+Z - (3/98) aut
+ (p/hLg)aut + LKg + Kepg + (01/(T - WH+9T)) 30T) = 2¢

f00T Y reekgy = KAg

1(00T / &8) 3utT = o8

10T < W$) IT -4

‘2T % (07 + wiuowg) = ug

txeeky = £g

f(w3eSy ‘WTIdy ‘WOUL. wPOMa ‘uODLs ‘WUOHs ‘4TS,) = Kepap
=(ag yoam fo finp apndwo))

-auren s Aep ayj juud am pue
Joquunu s Aep a3 9ndwod am “yxop ‘A[earjoadsar xeask ayj Jo S}31p omy 58] 24}
pue om} 3s1y o} ploy LA pue o4 sajqerrep (w§ o[qeirea) anfea SYIUOW Y3
jdepe jsnuz am 1204 Juipoadoid oy} JO YUOW ISB Y3 ST ATRNIqo,] YRy seumsse
901 oYy ‘edUlg ID[[RZ "A9Y UR}Id AQ PAjUSAUL ‘B[NY S, I9{[e7 SN oM H59M Y3
Jo Kep ay3 andwod 03 WPIO U] ‘sAep YoM S} JO SoWEU) Spioy Aepny Aeiry

‘0 > Aepg
11 Lepg > [1-Uavoug]syiuomy It
JO\Hauow$ guow xoy Lepg Lep reSaT1I, oTP
t0 == p Y Teehg ||
(0 == 00% ¥ xeak$ 7% 0 == 001 % Teek$) JT 67 = {1]sHaucny
‘1 > qamowy ||] < auwomg FT ,W\Yauowy :yiuom TeBeTTI, 2IP
Y(I€ ‘0E ‘TE ‘0 ‘1€ ‘IE ‘0E ‘1€ ‘O€ ‘TE ‘8T ‘IE) = syauoup
t g9LT > Teakg FT
LU\ €641 > Ieed$: real IepusTes weiroBaipn jouw st IeBL, OIP
=(ez UOUDPYDL VP WLIOf23])
‘qjuowt Surpuodss100 a3 Jo sAep Jo PQUINU
ay3 03 [enba 10 $so] pue dATHsod ST roquInu Aep pIfea © ‘A[jusnbosuo)) ‘sAep 67
sey A1eniqag weyy ‘p Aq S[qISIAIP Iesk AIjuad-uou ® 10 0y Aq S[qQISIAIp 1ok
Amyuen e st 1 “a°1 ‘duo ded] e st 1eak oY) USYA\ "JUNOIIE OJUI U E) dre siesk
deal yeY} 105 2YEUI JSNU 9M ‘IABMO YIUOW Y3 JO sAep a3 03 | Jo sFuer ayyy
up st Aep [eB0] ¥ "¢1-1 @8wer aypy ul st yjuows feSe| v -1esk deaf-uou e ur yuow
o®s Jo sep oy sp[oy syiuomy LeiTy gAY Jo1e Sl 1 ‘9’1 ‘repusred uei103a10)
513 JO 180 PIfea & ST IeoL 91} er[) YOOUD oM ISILY '93ep USGAIS 2y djepIfeA Ip

7 su rerweds 8661 ‘61 Ap[

q

A4

t/+0\/ .i Kep$ F1 ,u\Kep$:Iequnm e jou sT Keq, OIP
f/+P\/ .i H3mouw$ JT ,U\{ITWOUW$:IXequmu ® 30U ST YIUOK, °OTP
/+P\/ .i Teek$ FT ,U\Teef$:IequnU T 30U ST Iea}, TP
=(o1 susquiny paspus 240 4vafl pup ypuow ‘fiop Layym Y99YD)
-30adsax sy ut gndur no syepifea o3 suotssoxdxa
Te[801 s (1904 Lojdwra apy “ndul se SI9j0RILYD WOpPUel JO 530usnbas 0 spioa
19jue ABWU JOST € 9seO 1IN0 Ul ‘surexdoxd [0oy 03 L13 s1esn Auewr 95€O Y3 ST Y SY

(21 suaqunu paopus auv LDafl puv Yluow ‘Rop J2ygaym §2YD)
t[2)A0uY$ = reedy
{(T]1ADY¥Y$ = gawouy
t[0JADuv$ = Leps
‘g = o8xeg yr ,u\AA wm pp Yeem~yo~Aep :eBesn, eTP
1ADEVD = oBreg

=(q1 spuswnbin 3ul PUDWWOD YIIYD)

-19pI0 SHY} Ul Teak oy} pue yjuow oy ‘Kep o3 59
‘uotyeurzopu ayep oY) 108 om ‘yxa)N -aBessoul To110 djerrdoxdde ue YIm $1I0GE 3
asmiay3o ‘(szeBojur) sjusum$Bre aulf puenrod 231y} Afuo sjdsdre urexBoxd oY],

{qz y9am fo fivp amdwo))
(22 uoyvpyDR 2}Vp ULLOMI])
(a1 Spuswnbin Ul PUDWWOD YPUYD)

txeBa4ut esn
Tasd/utq/asn/i#
=(o1,)
orjeunjyire rodajur zedoid sansul 0} 19pIO UL 193930t
snpour a1y sasn ureifoxd syl N 03 spuodsaliod feys deam ogy jo Aep Ay
sandwos pue Sul PUEWUIOD 3y} WOy 538p © spea1 jey} urexdoxd sjduws s1 SIYT,

1 su yerueds 8661 ‘61 AL

o1

qt

el

References

[Bri93]

[CS96]

[Knu92)

[P.88]

[Par96]

[Ram94]

[Syr93]

[Wai88]

Preston Briggs. Nuweb, A simple literate programming tool.
http://cs.rice.edu/public/preston, Rice University, Houston, TX, USA, 1993.

Bart Childs and Johannes Sametinger. Literate programming and documentation reuse.
In Murali Sitaraman, editor, Fourth International Conference on Software Reuse: proceed-
ings, April 28-26, 1996, Orlando, Florida, USA, pages 205-214. IEEE Computer Society
Press, 1996.

Donald E. Knuth. Literate Programming. Number 27 in CLSI Lecture Notes. Center for
the Study of Language and Information, Leland Stanford Junior University, 1992.

Gabriel R. P. Deliberate writing. In D. D. McDonald and L. Bole, editors, Natural
Language Generation Systems, pages 1-46. Springer-Verlag, New York, 1988.

Chris Parker. Literate programming using SGML and modern hypertext technology. The-
sis (M.Sc.), Department of Computer Science, Worcester Polytechnic Institute, Worcester,
MA, USA, 1996.

Norman Ramsey. Literate programming simplified. IEEE Software, 11(5):97-105, Septem-
ber 1994.

Apostolos Syropoulos. Explaining Computer Programs: An Elementary Approach. The-
sis (M.Sc.), Department of Computer Science, University of Gothenburg, Gothenburg,
Sweden, 1993. Available as: ftp://obelix.ee.duth.gr/pub/docs/explain.ps.gz.

W. W. Waite. Personal communication, August, 1988.

56

