
A Note On Type Checking Linear Functional Languages

Apostolos Syropoulos
366, 28th October Str.

GR-671 00 Xanthi, GREECE
apostolo@platon, ee. duth. gr

Abs t r ac t
A linear functional language is based on a linear A-calculus. Any linear functional program must

observe linearity and it has to be type correct. Type correctness can be ensured by means of a type-
checking system. A type checker for a linear functional language is essentially a type-checker for an
ordinary functional language, modified to properly handle the modality ofcourse.

1 Introduct ion

In ordinary logic it is valid to use an assumption more than once or even to ignore it. This is justified by
the silent hypothesis that an assumption which is true, it will remain true. However, this is not the case in
real life. Consider, for example, the assumption: Today is a sunny day. This assumpt ion may be valid on a
summer day in Athens 1 , but not on a winter day in Stockholm. The inventor of linear logic designed a logical
system tha t takes under consideration the course of t ime and its consequences [Gir87]. So, it is valid to use
an assumpt ion only once, because it holds only once. At the same t ime we cannot use an assumpt ion more
than once for the same reason. Moreover, we cannot ignore an assumption, simple because it exists and we
cannot pretend that it does not! In other words we must use each assumption only once.

Ordinary functional programming languages are based on A-calculus. Accordingly a linear functional
language should be based on a linear A-calculus (e.g., as it is presented in [Laf88]). Once a linear A-calculus
is available we can use it as a simple, thou impractical, p rogramming notation. A valid p rogram in this
notation has to be linear correct and type correct. Since our main focus is on type correctness, the reader
interested in linear correctness should consult either [HS92] or [Laf88] for more information on the subject.
Type checking a linear functional program means to be able to handle successfully the modal i ty ofcourse. Here
we present a type-checker that can handle successfully this modality. The type-checker has been developed
as par t of a project to implement a linear functional language (the language is described in [HS92]).

2 The Modal i ty ofcourse
The modal i ty of ofcourse (denoted by an exclamation mark) is a indirect introduction of weakening (1) and
contraction (2):

F ~ B
F, !A I-- B (1)

F, !A, !A t-- B
F, !A t- B (2)

The modal i ty is defined by the equation

!A = A&I&(!A®!A)

The categorical combinators r e a d : !A ~ A, k i l l : !A ~ 1, and dupl : !A ~!A®!A are used to ex t rac t the
elements of an ofcoursed object, which in turn has been created with the combinator make : A ~ !A.

1The smoke does not count as a cloud :-)

60

3 The Typing Rules

The type rules for a linear functional language have no context, but this is only a direct consequence of the
a fact that every correct linear functional program must obey linearity, among other things. A type checker
as those described in [Jon87, FH88] can handle most constructs. However, it has to be modified in order to
be able to handle situations that involve the combinator make. Every expression has a storage.

D e f i n i t i o n 3.1 Let e be an expression with free variables Xl : t l ,x2 : t 2 , . . . ,Xn : tn (tn is either a generic
or a concrete type). Then the set [t l , t2 , . . . , tn] is called the storage of e.

The storage of an expression is called valid either if it is empty or if it consists of type objects of the form !a.
In case a storage consists only of type objects of the form ai (i.e., some generic type), then we can transform
it by replacing each ai with a !ai. If an expression has a valid storage it is possible to perform the type
checking in the usual way. As an example consider the expression Ax.makex. The body of the A abstraction
is an expression involving make. The subexpression x has storage [~], which is transformed to [!~], according
to the above rules. The whole A abstraction has type !fl ~!!fl .

4 Implementing the Type Rules

In [HS92] we describe a simple linear functional language called Democritos. An experimental implementation
of this language exists, written in the functional language LML, and it is available from:

h t t p : / / p l a t o n . ee. duth . g r /~ aposZolo

as l i n e a r , t a r . gz. The type checker of this implementation is based on the one by Peter Hancock, which is
described in chapter nine of [Jon87]. Here we describe the part of it directly related to the modality.

The first step in the design of a type-checker is to decide about the representation of type expressions.

type Tvname == (List Int) /* type variable name is */
and /* a l i s t of i n t e g e r s */

t y p e TEXP = TVAR Tvname + /* a type expr i s e i t h e r a t y p e v a r i a b l e * /
TCONS S t r i n g (L i s t TEXP) /* or a t y p e c o n s t r u c t */

The next step involves the definition of certain type forming operators, such as i n t for integers etc.

and
imp texpl texp2 = TCONS "imp" [texpl;texp2]
/* denotes that a function has type texpl --> texp2 */

and
ofcourse texp = TC0NS "!" [texp]

The modality ofcourse has its own type forming operator for obvious reasons. The core of a type checker is
the unification procedure. This procedure tries to find the most general type of an expression by solving type
equations. In order to solve type equations we need certain substitution operators (or functions, if you prefer
this term), which transform type expression. Our type checker uses the standard substitution operators (the
identity substitution and the 6 substitution), plus a new one the ~7 substitution:

and
id_subst t =

and
delta t texp

and
e t a t v n s

TVAR t

t " = i f t = t " then texp
else TVAR t"

tvn = if mem tvn tvns
then ofcourse (TVAR tvn)

else TVAR tvn

6!

The ~ substitution is used in the transformation of a generic type to an o]coursed one, only if this generic
type is a member of a specific storage; otherwise it behaves exactly like the identity substitution. We now
turn our attention to the type checker itself. Here we consider only the make case.

1 l ltc gamma as (EMake e) =
2 let rec

3 fv0 = freeVars0f [] e
4 and

5 fv = map mkname fv0
6 and

7 tvns = gettvnEnv gamma fv
8 and

9 gamma" = updateEnv gamma fv
i0 and

11 tfv = map (gettype gamma') fv
12 and

13 areofcoursed = isofcoursed tfv
14 and

15 ns0 = deplete ns
16 and

17 tvn = next_name ns0
18 and
19 nsl = deplete ns0
20 and

21 tvnl = next name nsl

22 in if null fv

23 then tcmake tvn tvnl (id_subst) (tc gamma nsl e)
24 else if areofcoursed

25 then tcmake tvn tvnl (eta tvns)(tc gamma" nsl e)

26 else Failure("Improper Storage ", (EMake e))

The type checker is a function that gets three arguments

I. gammma is a type environment that associates type schemes with each of the free variables of the
expression to be type-checked.

2. ns is a supply of type variable names, and

3. the last argument is the expression to be type-checked

and it returns a tuple consisting of

1. a substitution ¢ defined on the unknown type variables of gamma

2. a type t derived for the expression that is being type-checked in a the possible altered type environment.

Line 1, in the above code fragment, identifies the case we are dealing with. In line 3 we get the free
variables (if any) of the (sub-)expression e. In lines 11-13 we get the storage of the expression and the result
of the validity check of this storage. The validity check is performed by the following function:

i s o f c o u r s e d [] = t r u e
l l is of coursed ((TVAR _).tt) = isofcoursed tt

l lisofcoursed ((TC0NS constr _).tt) = (constr = "!") ~ isofcoursed tt

In lines 14-21 we create some new type names which will be used later. Next, in line 22, we check to see if

the storage is empty or not. If it is empty we perform ordinary type checking, otherwise we must check if it
is valid. In case it is valid we perform type checking in the transformed environment. In case it is not valid,
the function stops and reports a Improper Storage error. The function tcmake is the one which calls the
unification procedure, which deduces the most general type of the expression, if that is possible.

and
tcmake tvn tvnl zeta (Ok(phi, t, e)) =

tcmake" tvn zeta (unify phi
(imp (TVAR tvnl) (ofcourse (TVAR tvnl)),
imp t (TVAR tvn))) e

l[tcmake tvn tvnl zeta (Failure s) = Failure s
and

tcmake" tvn zeta (Failure s) e = Failure(s, (EMake e))
]Itcmake" tvn zeta (Ok(phi)) e = Ok(scomp phi zeta, phi tvn, (EMake e))

The ~nction tcmake'is actu~ly used to gettheresult ofthe unific~ion. If the unific~ion procedure h~
~iledinitsjob, then we mustreportth~,otherwise we co~inue by returningthe deduced type.

R e f e r e n c e s

[FH88] Anthony J. Field and Peter G. Harrison. Functional Programming. Addison-Wesley Publishing
Company, Inc., Wokinghan, England, 1988.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

[HS92] P6tur Hilmarsson and Apostolos Syropoulos. Democritos: A linear functional language. Electronic
document available at http://platon.ee.duth.gr/-apostolo/demo.ps.gz, May 1992.

[Jon87] Simon L. Peyton Jones. The Implementation of Functional Programming Languages. Prentice-Hall
International Series in Computer Science. Prentice-Hall International (UK) Ltd, London, 1987.

[Laf88] Yves Lafont. The linear abstract machine. Theoretical Computer Science, 59:157-180, 1988.

63

