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Abs t r ac t  
A linear functional language is based on a linear A-calculus. Any linear functional program must 

observe linearity and it has to be type correct. Type correctness can be ensured by means of a type- 
checking system. A type checker for a linear functional language is essentially a type-checker for an 
ordinary functional language, modified to properly handle the modality ofcourse. 

1 Introduct ion  

In ordinary logic it is valid to use an assumption more than once or even to ignore it. This  is justified by 
the silent hypothesis that  an assumption which is true, it will remain true. However, this is not the case in 
real life. Consider, for example,  the assumption: Today is a sunny day. This assumpt ion may  be valid on a 
summer  day  in Athens 1 , but  not on a winter day in Stockholm. The inventor of linear logic designed a logical 
system tha t  takes under consideration the course of t ime and its consequences [Gir87]. So, it is valid to use 
an assumpt ion only once, because it holds only once. At the same t ime we cannot use an assumpt ion  more 
than once for the same reason. Moreover, we cannot ignore an assumption,  simple because it exists and we 
cannot  pretend that  it does not! In other words we must  use each assumption only once. 

Ordinary  functional programming languages are based on A-calculus. Accordingly a linear functional 
language should be based on a linear A-calculus (e.g., as it is presented in [Laf88]). Once a linear A-calculus 
is available we can use it as a simple, thou impractical,  p rogramming notation. A valid p rogram in this 
notation has to be linear correct and type correct. Since our main focus is on type correctness, the reader 
interested in linear correctness should consult either [HS92] or [Laf88] for more information on the subject. 
Type  checking a linear functional program means to be able to handle successfully the modal i ty  ofcourse. Here 
we present  a type-checker that can handle successfully this modality. The type-checker has been developed 
as par t  of a project  to implement a linear functional language (the language is described in [HS92]). 

2 The  Modal i ty  ofcourse 
The modal i ty  of ofcourse (denoted by an exclamation mark) is a indirect introduction of weakening (1) and 
contraction (2): 

F ~ B  
F, !A I-- B (1) 

F, !A, !A t-- B 
F, !A t- B (2) 

The  modal i ty  is defined by the equation 

!A = A&I&(!A®!A) 

The categorical combinators r e a d  : !A ~ A, k i l l  : !A ~ 1, and dupl  : !A ~!A®!A are used to ex t rac t  the 
elements of an ofcoursed object,  which in turn has been created with the combinator make : A ~ !A. 

1The smoke does not count as a cloud :-) 

60 



3 The Typing Rules 

The type rules for a linear functional language have no context, but  this is only a direct consequence of the 
a fact that every correct linear functional program must obey linearity, among other things. A type checker 
as those described in [Jon87, FH88] can handle most constructs. However, it has to be modified in order to 
be able to handle situations that involve the combinator make. Every expression has a storage. 

D e f i n i t i o n  3.1 Let e be an expression with free variables Xl : t l ,x2  : t 2 , . . .  ,Xn : tn (tn is either a generic 
or a concrete type). Then the set [ t l , t2 , . . . , tn]  is called the storage of e. 

The storage of an expression is called valid either if it is empty or if it consists of type objects of the form !a. 
In case a storage consists only of type objects of the form ai  (i.e., some generic type),  then we can transform 
it by replacing each ai with a !ai. If an expression has a valid storage it is possible to perform the type 
checking in the usual way. As an example consider the expression Ax.makex. The body of the A abstraction 
is an expression involving make. The subexpression x has storage [~], which is transformed to [!~], according 
to the above rules. The whole A abstraction has type !fl ~!!fl .  

4 Implementing the Type Rules 

In [HS92] we describe a simple linear functional language called Democritos.  An experimental implementation 
of this language exists, written in the functional language LML, and it is available from: 

h t t p  : / / p l a t o n .  ee.  duth .  g r /~  aposZolo 

as l i n e a r ,  t a r .  gz. The type checker of this implementation is based on the one by Peter  Hancock, which is 
described in chapter nine of [Jon87]. Here we describe the part  of it directly related to the modality. 

The first step in the design of a type-checker is to decide about the representation of type expressions. 

type Tvname == (List Int) /* type variable name is */ 
and /* a l i s t  of i n t e g e r s  */ 

t y p e  TEXP = TVAR Tvname + /* a type expr  i s  e i t h e r  a t y p e  v a r i a b l e  * /  
TCONS S t r i n g  ( L i s t  TEXP) /*  or  a t y p e  c o n s t r u c t  */  

The next step involves the definition of certain type forming operators, such as i n t  for integers etc. 

and 
imp texpl texp2 = TCONS "imp" [texpl;texp2] 
/* denotes that a function has type texpl --> texp2 */ 

and 
ofcourse texp = TC0NS "!" [texp] 

The modality ofcourse has its own type forming operator for obvious reasons. The core of a type checker is 
the unification procedure. This procedure tries to find the most general type of an expression by solving type 
equations. In order to solve type equations we need certain substitution operators (or functions, if you prefer 
this term), which transform type expression. Our type checker uses the standard substitution operators (the 
identity substitution and the 6 substitution), plus a new one the ~7 substitution: 

and 
id_subst t = 

and 
delta t texp 

and 
e t a  t v n s  

TVAR t 

t "  = i f  t = t "  then texp 
else TVAR t" 

tvn = if mem tvn tvns 
then ofcourse (TVAR tvn) 

else TVAR tvn 
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The ~ substitution is used in the transformation of a generic type to an o]coursed one, only if this generic 
type is a member of a specific storage; otherwise it behaves exactly like the identity substitution. We now 
turn our attention to the type checker itself. Here we consider only the make case. 

1 l ltc gamma as (EMake e) = 
2 let rec 

3 fv0 = freeVars0f [] e 
4 and 

5 fv = map mkname fv0 
6 and 

7 tvns = gettvnEnv gamma fv 
8 and 

9 gamma" = updateEnv gamma fv 
i0 and 

11 tfv = map (gettype gamma') fv 
12 and 

13 areofcoursed = isofcoursed tfv 
14 and 

15 ns0 = deplete ns 
16 and 

17 tvn = next_name ns0 
18 and 
19 nsl = deplete ns0 
20 and 

21 tvnl = next name nsl 

22 in if null fv 

23 then tcmake tvn tvnl (id_subst) (tc gamma nsl e) 
24 else if areofcoursed 

25 then tcmake tvn tvnl (eta tvns)(tc gamma" nsl e) 

26 else Failure("Improper Storage ", (EMake e)) 

The type checker is a function that gets three arguments 

I. gammma is a type environment that associates type schemes with each of the free variables of the 
expression to be type-checked. 

2. ns is a supply of type variable names, and 

3. the last argument is the expression to be type-checked 

and it returns a tuple consisting of 

1. a substitution ¢ defined on the unknown type variables of gamma 

2. a type t derived for the expression that is being type-checked in a the possible altered type environment. 

Line 1, in the above code fragment, identifies the case we are dealing with. In line 3 we get the free 
variables (if any) of the (sub-)expression e. In lines 11-13 we get the storage of the expression and the result 
of the validity check of this storage. The validity check is performed by the following function: 

i s o f c o u r s e d  [] = t r u e  
l l is of coursed ((TVAR _).tt) = isofcoursed tt 

l lisofcoursed ((TC0NS constr _).tt) = (constr = "!") ~ isofcoursed tt 

In lines 14-21 we create some new type names which will be used later. Next, in line 22, we check to see if 

the storage is empty or not. If it is empty we perform ordinary type checking, otherwise we must check if it 
is valid. In case it is valid we perform type checking in the transformed environment. In case it is not valid, 
the function stops and reports a Improper Storage error. The function tcmake is the one which calls the 
unification procedure, which deduces the most general type of the expression, if that is possible. 



and 
tcmake tvn tvnl zeta (Ok(phi, t, e)) = 

tcmake" tvn zeta (unify phi 
(imp (TVAR tvnl) (ofcourse (TVAR tvnl)), 
imp t (TVAR tvn))) e 

l[tcmake tvn tvnl zeta (Failure s) = Failure s 
and 

tcmake" tvn zeta (Failure s) e = Failure(s, (EMake e)) 
]Itcmake" tvn zeta (Ok(phi)) e = Ok(scomp phi zeta, phi tvn, (EMake e)) 

The ~nction tcmake'is actu~ly used to gettheresult ofthe unific~ion. If the unific~ion procedure h~ 
~iledinitsjob, then we mustreportth~,otherwise we co~inue by returningthe deduced type. 
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