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Abstract. This paper is an attempt to summarize the basic elements of
the multiset theory. We begin by describing multisets and the operations
between them, then we present hybrid sets and their operations. We
continue with a categorical approach to multisets, and then we present
fuzzy multisets and their operations. Finally, we present partially ordered
multisets.

1 Introduction

Many fields of modern mathematics have been emerged by violating a basic prin-
ciple of a given theory only because useful structures could be defined this way.
For example, modern non-Euclidean geometries have been emerged by assuming
that the Parallel Axiom1 does not hold. Similarly, multisets [8,13,16] have been
defined by assuming that for a given set A an element x occurs a finite num-
ber of times. Multisets are also known as “bags” (but many consider this term
too vulgar. . . ), “heap”, “bunch”, “sample”, “occurrence set”, “weighted set”
and “fireset”—finitely repeated element set. An argument against the position
that the term “bag” is too vulgar is that this term is a plain English word—
something in which we put things to carry them around. Besides, in English
language mathematical literature it is a tradition to use plain words –group, set,
ring, . . . – unlike other sciences, where people invent new long ones by sticking
Greek and Latin words together. Also, we must note that the term “multiset”
has been coined by N.G. de Bruijn [8]. The first person who actually used mul-
tisets is Richard Dedekind in his well-known paper “Was sind und was sollen
die Zahlen?” (“The nature and meaning of numbers”) [6]. This paper was pub-
lished in 1888. The reader interested to read a rather complete account of the
development of multiset theory should read Blizard’s excellent survey [5].

From a practical point of view multisets are very useful structures arising
in many areas of mathematics and computer science. The prime factorization
of an integer n > 0 is a multiset N whose elements are primes. Every monic
polynomial f(x) over the complex numbers corresponds in a natural way to the

� Dedicated to the fond memory of my brother Mikhail Syropoulos.
1 Which can be stated as follows: Given a point P not incident with line m, there is

exactly one line incident with P and parallel to m.
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multiset F of its “roots”. Other examples of multisets include the zeros and
poles of meromorphic functions, the invariants of matrices in a canonical form,
the invariants of finite Abelian groups, etc. The terminal strings of a context-
free grammar form a multiset which is a set iff the grammar is unambiguous.
Processes in an operating system can be thought of as multisets. The mathe-
matical treatment of concurrency involves the use of multisets. In social sciences,
multisets can be used to model social structures, etc.

There are three methods to define a set and we are recalling them now, since
they will be heavily used in the rest of the text:

1. A set is defined by naming all its members (the list method). This method
can be used only for finite sets. Set A, whose members are a1, a2, . . . , an, is
usually written as

A = {a1, a2, . . . , an}.
2. A set is defined by a property satisfied by its members (the rule method). A

common notation expressing this method is

A = {x | P (x)},

where the symbol | denotes the phrase “such that”, and P (x) designates a
proposition of the form “x has the property P .”

3. A set is defined by a function, usually called the characteristic function, that
declares which elements of a universal set X are members of set A and which
are not. Set A is defined by its characteristic function, χA, as follows:

χA(x) =
{

1, if x ∈ A
0, if x �∈ A

In what follows we present the definition of multisets and the basic operations
between multisets. Moreover, we briefly present hybrid sets, i.e., multisets which
may have negative integers as multiplicities as well as nonnegative integers. Then,
we proceed with a categorical approach to multisets by defining categories of
multisets. Next, we present fuzzy multisets and their operations. We finish by
presenting pomsets and their basic operations.

2 Multisets and Their Operations

Ordinary sets are composed of pairwise different elements, i.e., no two elements
are the same. If we relax this condition, i.e., if we allow multiple but finite
occurrences of any element, we get a generalization of the notion of a set which
is called a multiset.

There are two different kinds of sets with a finite number of repeated ele-
ments: sets with distinguishable repeated elements, e.g., people sharing a com-
mon property, and sets with indistinguishable repeated elements, e.g., a “soup”
of elementary particles. Monro [12] calls the first kind of sets multisets and the
second multinumbers. However, in order to avoid confusion, we will use the term
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multiset for Monro’s multinumbers and the term real multisets for Monro’s mul-
tisets.

Real multisets and multisets are associated with a (ordinary) set and an
equivalence relation or a function, respectively. Here are the formal definitions:

Definition 1. A real multiset X is a pair (X, ρ), where X is a set and ρ an
equivalence relation on X. The set X is called the field of the real multiset.
Elements of X in the same equivalence class will be said to be of the same sort;
elements in different equivalence classes will be said to be of different sorts.
Given two real multisets X = (X, ρ) and Y = (Y, σ), a morphism of real

multisets is a function f : X → Y which respects sorts; that is, if x, x′ ∈ X and
x ρ x′, then f(x) σ f(x′).

Definition 2. Let D be a set. A multiset over D is just a pair 〈D, f〉, where D
is a set and f : D → N is a function.

The previous definition is the characteristic function definition method for mul-
tisets.

Remark 1. Any ordinary set A is actually a multiset 〈A,χA〉, where χA is its
characteristic function.

Since multisets are sets with multiple but finite occurrences of any element, one
can define a multiset by employing the list method. However, in order to avoid
confusion we will use square brackets for multisets and braces for sets. In what
follows we will employ the most suitable definition method for each case we
encounter.

An important notion in set theory is the notion of a subset. Moreover, for
ordinary sets there are certain operations one can perform between sets, such as
set intersection, union, etc. We proceed with the definitions of the notion of the
subset of a multiset and the operations between multisets.

Definition 3. Suppose that A = 〈A, f〉 is a multiset; the subset B of A is called
the support of A if for every x such that f(x) > 0 this implies that x ∈ B, and
for every x such that f(x) = 0 this implies that x �∈ B.

It is clear that the characteristic function of B can be specified as:

χB(x) = min(f(x), 1).

Example 1. Given the multiset A = [a, a, a, b, c, c], then its support is the set
{a, b, c}.

Definition 4. Assume that A = 〈A, f〉 and B = 〈A, g〉 are two multisets. We
say that A is a sub-multiset of B, denoted A ⊆ B if for all a ∈ A we have

f(a) ≤ g(a).
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A is called a proper sub-multiset of B, denoted A ⊂ B, if in addition for some
a ∈ A we have

f(a) < g(a).

Obviously, it follows that for any two multisets, A = B iff A ⊆ B and B ⊆ A.

Definition 5. Let A = 〈A, f〉 be a multiset; A is the empty multiset if for all
a ∈ A, f(x) = 0.

Definition 6. Suppose that A = 〈A, f〉 is a multiset; its cardinality, denoted
card(A), is defined as

card(A) =
∑
a∈A

f(a).

If A is a set, then PA is the set of all multisets which have A as their support
set. Moreover, A is the smallest non-empty multiset in PA in the sense that if
B ∈ PA, then

card(B) ≥ card(A).

We are now turning our attention to the operations between multisets. We de-
fine, in this order, the sum, the removal, the union and the intersection of two
multisets.

Definition 7. Suppose that A = 〈A, f〉 and B = 〈A, g〉 are two multisets. Their
sum, denoted A � B, is the multiset C = 〈A, h〉, where for all a ∈ A:

h(a) = f(a) + g(a).

It can be easily shown that the multiset sum operation has the following prop-
erties:

1. Commutative: A � B = B � B;
2. Associative: (A � B) � C = A � (B � C);
3. There exists a multiset, the null multiset ∅, such that A � ∅ = A.

It is important to note that there exists no inverse and multiset sum is not
idepotent.

Definition 8. Suppose that A = 〈A, f〉 and B = 〈A, g〉 are two multisets. The
removal of multiset B from A, denoted A�B, is the multiset C = 〈A, h〉, where
for all a ∈ A:

h(a) = max
(
f(a)− g(a), 0

)
.

Definition 9. Suppose that A = 〈A, f〉 and B = 〈A, g〉 are two multisets. Their
union, denoted A ∪ B, is the multiset C = 〈A, h〉, where for all a ∈ A:

h(a) = max
(
f(a), g(a)

)
.
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Definition 10. Suppose that A = 〈A, f〉 and B = 〈A, g〉 are two multisets.
Their intersection, denoted A ∩ B, is the multiset C = 〈A, h〉, where for all
a ∈ A:

h(a) = min
(
f(a), g(a)

)
.

The following properties can be easily established for union, intersection, and
sum of multisets:

1. Commutativity: A ∪ B = B ∪ A
A ∩ B = B ∩ A;

2. Associativity: A ∪ (B ∪ C) = (A ∪ B) ∪ C
A ∩ (B ∩ C) = (A ∩ B) ∩ C;

3. Idempotency: A ∪A = A
A ∩A = A;

4. Distributivity: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C);

5. A � (B ∪ C) = (A � B) ∪ (A � C)
A � (B ∩ C) = (A � B) ∩ (A � C);

6. A ∩ (A � B) = A
A ∪ (A � B) = A � B;

7. A � B = (A ∪ B) � (A ∩ B).

Let A = 〈X, f〉 be a multiset and B ⊆ X. We are interested in forming the
multiset C = 〈X, g〉, where

g(x) =
{
f(x), if x ∈ B,
0, if x �∈ B,

or, in other words, g(x) = f(x) · χB(x).
A closely related problem is that of forming a multiset by removing all the

elements from A which are in the set B. That is, we are interested in forming
the multiset D = 〈X,h〉, where

h(x) =
{

0, if x ∈ B,
f(x), if x �∈ B,

which can be expressed compactly as follows:

h(x) = f(x) · (1− χB(x)),∀x ∈ B.
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However, one may note that 1 − χB(x) is the characteristic function of the
complement set of B, denoted B̄. So, the previous equation becomes

h(x) = f(x) · χB̄(x),∀x ∈ B.

Thus,
D = A� B̄.

We shall call the operation A � B multi-intersection. In general, it holds that
if A = 〈X,χA〉, A ⊆ X, and B is a set, then A � B = A ∩ B. Moreover, the
following properties hold:

A�X = A

A� ∅ = ∅
(A1 ∩ A2) �B = (A1 �B) ∩ (A2 �B)
(A1 ∪ A2) �B = (A1 �B) ∪ (A2 �B)

3 Hybrid Sets

Hybrid sets and new sets are generalization of multisets and sets respectively.
In a hybrid set the multiplicity of an element can be either a negative number,
zero, or a positive number. A new set is to hybrid sets what is a set to a multiset,
i.e., a special case. We give now the definition of the hybrid set due to Loeb [9]:

Definition 11. Given a universe U , any function f : U → Z, where Z is the
set of all integers, is called a hybrid set. The value of f(u) is said to be the
multiplicity of the element u. If f(u) �= 0 we say that u is a member of f and
we write u ∈ f ; otherwise, we write u �∈ f . We define the number of elements,
#f , to be the sum

∑
u∈U f(u). f is said to be an #f (element) hybrid set.

Hybrid sets are denoted by employing the list method and by inserting a bar
to separate elements with negative multiplicity from those with a non-negative
multiplicity. Elements occurring with a positive multiplicity are written on the
left of the bar, and elements occurring with a negative multiplicity are written
on the right of the bar.

Example 2. If f = {a, b, b | d, e, e} is a hybrid set, then f(a) = 1, f(b) = 2,
f(d) = −1, and f(e) = −2.

The empty hybrid set, denoted ∅, is the unique hybrid set for which all elements
have multiplicity equal to zero. We can specify the empty hybrid set by {|}. The
definition of subset-hood in the case of hybrid sets is also due to Loeb:

Definition 12. Let f and g be hybrid sets. We say that f is a subset of g and
that g contains f and we write f ⊆ g if either f(u) � g(u) for all u ∈ U , or
g(u)− f(u) � g(u) for all u ∈ U , where � is a partial ordering of the integers
defined as follows: i� j iff i ≤ j and either i < 0 or j ≥ 0.
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We proceed now with the definition of the various operations between hybrid
sets.

Definition 13. Assume that f and g are two hybrid sets over the same
universe U . Then, their intersection, f ∩ g, is the hybrid set h, such that
h(u) = max(f(u), g(u)), their union, f ∪ g, is the hybrid set h, such that h(u) =
min(f(u), g(u)), and their sum, f � g, is the hybrid set h, such that h(u) =
f(u) + g(u).

We easily verify the correctness of these definitions by using the definition of
subset-hood.

4 Categorical Models of Multisets

Let C be a category. A functor E : Cop → Set is called a presheaf on C. Thus,
a presheaf on C is a contravariant functor. The presheaves on C with natural
transformations as arrows form a category denoted Psh(C). Suppose that C is a
set, i.e., a discrete category; then, the presheaf F : C → Set denotes a multiset,
since F (c) is a set whose cardinality is equal to the number of times c occurs
in the multiset. So, for any set C, the category Psh(C) denotes the category of
all multisets of C. These remarks lead us to the definition of a category of all
possible multisets:

Definition 14. Category MSet is a category of all possible multisets.

1. The objects of the category consist of pairs (A,P ), where A is a set and
P : A→ Set a presheaf on A.

2. If (A,P ) and (B,Q) are two objects of the category, an arrow between these
objects is a pair (f, λ), where f : A→ B is a function and λ : P → Q ◦ f is
a natural transformation, i.e., a family of functions.

3. Arrows compose as follows: suppose that (A,P )
(f,λ)−→ (B,Q) and (B,Q)

(g,µ)−→
(C,R) are arrows of the category, then (f, λ) ◦ (g, µ) = (g ◦ f, µ× λ), where
g ◦ f is the usual function composition and µ× λ : P → R ◦ (g ◦ f).

4. Given an object (A,P ), the identity arrow is (idA, idP ).

The last part of the definition is a kind of wreath product (see [4]). However,
it is not clear at the moment how this definition fits into the general theory of
wreath products.

This is not the only way one can categorically define multisets. Suppose
that F : A → Set is a presheaf and that A is a set. Then if we form the set
X =

⋃
i∈A Xi, where Xi = F (i), we can define the function p : X → A. This

function is equivalent to the presheaf F . Moreover, p−1(a), i.e., the preimage of
p, is the set of copies of a in the multiset. Now, we can define another category
of all possible multisets:

Definition 15. Category Bags is a category of all possible multisets.

1. The objects of the category consist of pairs (A, p), where p :
⋃

i∈A Xi → A.
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2. An arrow between two objects (A, p) and (B, q) is a pair (f, g), where f :
A→ B and g : X → Y , such that the following diagram commutes:

A B

X Y✲

✲❄ ❄

g

p q

r

3. Suppose that (A, p)
(f,g)−→ (B, q) and (B, q)

(f ′,g′)−→ (C, r) are two arrows. Then
(f, g) ◦ (f ′, g′) = (f ′ ◦ f, g′ ◦ g) such that in the following diagram

A B C

X Y Z✲ ✲

✲ ✲❄ ❄ ❄

g g′

p q r

f f ′

the outer rectangle commutes iff the inner squares commute.
4. Given an object (A, p) the identity arrow is (idA, idX).

It is obvious that categories MSet and Bags are equivalent. Moreover, one can
study the properties of the categories MSet and Bags, but we feel this is not
the appropriate place for such a presentation. We now investigate the way one
can embed the category Bags into a Chu category [15].

Given an arbitrary object ⊥ in a category A, we construct the category
Chu(A,⊥) as follows:

1. The objects of Chu(A,⊥) consist of triplets (A1, r, A2), where A1, A2 are
objects in A and r : A1 ⊗A2 → ⊥ is an arrow in A.

2. An arrow from (A1, r, A2) to (B1, s, B2) is a pair (f, f̂), where f : A1 → B1

and f̂ : B2 → A2 are arrows in A such that the square

A1 ⊗A2 ⊥

A1 ⊗B2 B1 ⊗B2✲

✲
❄ ❄

s

r

f ⊗ idB2

idA1 ⊗ f̂

commutes.
3. Arrow composition is defined pairwise.

If A is any ∗-autonomous category (see [1,2]), then Chu(A,⊥) is A2, where ⊥
is a dualizing object [3]. It is now easy to define a full embedding of Bags into
Chu(Rel, 1), where Rel is the category of sets and binary relations between
them and 1 is any singleton set.
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We start by defining the object part of the functor:

Definition 16. (Object part) FunctorM maps each object (A, p) of Bags into
the Chu space (A, p̃,X), where X = domp, and p̃ is the relation obtained from
function p and a p Xi iff the multiplicity of a is equal to the cardinality of Xi.

We now proceed with the arrow part of the functor:

Definition 17. (Arrow part) Let (A, p) and (B, q) be two objects of the cate-

gory Bags. Moreover, suppose that (A, p)
(f,g)−→ (B, q) is an arrow between these

objects; thenM(f, g) = (f̃ , g̃−1), where f̃ is the relation obtained from function
f and g̃−1 the inverse of the relation obtained from function g.

The possible consequences of this embedding are explored in [15].

5 Fuzzy Multisets

Fuzzy set theory has been introduced as a means to deal with vagueness in
mathematics. The theory is well-established and we will not get into the trouble
of presenting it. We just note that fuzzy set theory was an attempt to develop a
formal apparatus to involve a partial membership in a set, mainly to arm people
in the modeling of empirical objects and facts. In other words, fuzzy set theory
is, sort to say, a generalization of the notion of set membership.

Definition 18. Suppose that X is a set. Any function A : X → I, where I =
[0, 1], is called a fuzzy subset of X. Function A is usually called the membership
function of the fuzzy subset A.

Fuzzy multisets have been introduced by Yager [16] and have been studied by
Miyamoto [10,11] and others. A fuzzy multiset of some set X is just a multiset
of X × I. We are now defining summation of fuzzy multisets:

Definition 19. If A = 〈X × I, f〉 and B = 〈X × I, g〉 are two fuzzy multisets,
then their sum, denoted A � B, is the fuzzy multiset C = 〈X × I, h〉, where for
all (x, µx) ∈ X × I:

h(x, µx) = f(x, µx) + g(x, µx).

As in the case of crisp2 multisets, there is more that one way to define a fuzzy
multiset. In order to define the basic operations between fuzzy multisets, we de-
fine fuzzy multisets by the list method. If A = {(xi, µi)}i=1,...,p be a fuzzy mul-
tiset, then we can write the same set as A = {{µ11, . . . , µ1�1}/x1, . . . , {µn, . . . ,
µn�n

}/xn}. Note that {µ11, . . . , µ1�1} is actually a multiset of I. Next, we re-
arrange the multisets {µ11, . . . , µ1�1} so that the elements appear in decreas-
ing order. Finally, we need to add zeroes so that the length of all multisets
{µ11, . . . , µ1�1} is the same. This representation is called the graded sequence. To
make things clear we give an example:

2 In fuzzy set theory the term crisp is used to characterize anything that is non-fuzzy.
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Example 3. Let

A = [(a, 0.2), (b, 0.5), (b, 0.1), (a, 0.2), (a, 0.3), (d, 0.7)]

be a fuzzy multiset. Then its graded sequence is

A = [{0.3, 0.2, 0.2}/a, {0.5, 0.1, 0}/b, {0.7, 0, 0}/d]

In case we want to perform certain operations on two or more fuzzy multisets,
all multisets {µ11, . . . , µ1�1} must have the same length. Moreover, even if one
fuzzy multiset does not contain an element c we must add an entry of the form
{0, 0, . . . , 0︸ ︷︷ ︸

p times

/c}, where p is the length of all other multisets. We are now giving

the definitions of the various operations between fuzzy multisets:

Definition 20. Assume that A = [[µ1p, . . . , µ11]/x1, . . . , [µnp, . . . , µn1]/xn] and
B = [[µ′

1p, . . . , µ
′
11]/x1, . . . , [µ′

np, . . . , µ
′
n1]/xn] are two fuzzy multisets; then

1. A ⊆ B iff for every xi, µij ≤ µ′
ij, j = 1, . . . , p.

2. A = B iff for every xi, µij = µ′
ij, j = 1, . . . , p.

3. C = A ∪ B, where C = [[µ′′
1p, . . . , µ

′′
11]/x1, . . . , [µ′′

np, . . . , µ
′′
n1]/xn] iff for every

xi, µ′′
ij = max(µ′

ij , µij), j = 1, . . . , p.
4. C = A ∩ B, where C = [[µ′′

1p, . . . , µ
′′
11]/x1, . . . , [µ′′

np, . . . , µ
′′
n1]/xn] iff for every

xi, µ′′
ij = min(µ′

ij , µij), j = 1, . . . , p.

When the functions max and min are replaced by a t-norm t and a t-conorm s
respectively, we obtain the definitions for ∩t and ∪s, respectively. The union and
intersection of arbitrary fuzzy multisets A, B, and C satisfy the following laws:

1. Commutativity. A ∪ B = B ∪ A
A ∩ B = B ∩ A

2. Associativity. (A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

3. Distributivity. (A ∪ B) ∩ C = (A ∩ B) ∪ (A ∩ C)
(A ∩ B) ∪ C = (A ∪ B) ∩ (A ∪ C)

Next, we define the α-cut for fuzzy multisets. We first recall the notion of
the α-cut for a fuzzy set:

Definition 21. Let U be a set, let C be a partially ordered set and let A : U →
C. For α ∈ C, the α-cut of A, is A−1(↑ α) = {u ∈ U | A(u) ≥ α}. The subset of
U will be denoted by Aα.

Definition 22. Assume that A = 〈X × I, f〉 is a fuzzy multiset, and that α ∈
(0, 1]. Then Aα = 〈X, f ′〉, i.e., the α-cut of A, is a multiset such that

f ′(x) =
∑

µx≥α

f(x, µx).
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Consequently, the α-cut of a fuzzy multiset is just a multiset.
Given a fuzzy multiset A = 〈X× I, h〉 and function f : X → Y we can define

two images:

f [A] = �x∈A{f(x)}
f(A) =

⋃
x∈A

{f(x)}

Note that in case the fuzzy multiset is just a fuzzy subset, the second image
corresponds to the extension principle of fuzzy set theory.

6 Partially Ordered Multisets

Partially ordered multisets (or just pomsets) have been used by Pratt [14] as a
means to model concurrency. In this model a process is a set of pomsets. Here
we will only present the definition of a pomset and the basic operations between
pomsets. The reader interested in learning more on their use on modeling con-
currency is refereed to Pratt’s paper. The following definition of pomset is due
to Gischer [7] and is copied verbatim from Pratt’s paper:

Definition 23. A labeled partial order (lpo) is a 4-tuple (V,Σ,≤, µ) consisting
of

1. a vertex set V , typically modeling events;
2. an alphabet Σ (for symbol set), typically modeling actions such as the arrival
of integer 3 at port Q;

3. a partial order ≤ on V , with e ≤ f typically being interpreted as event e
necessarily preceding event f in time; and

4. a labeling function µ : V → Σ assigning symbols to vertices, each labeled
event representing an occurrence of the action labeling it, with the same
action possibly having multiply occurrences, that is, µ need not be injective.

A pomset is then the isomorphism class of an lpo, denoted [V,Σ,≤, µ].

Now we are ready to define the basic operations between pomsets:

Definition 24. Assume that p = [V,Σ,≤, µ] and p′ = [V ′, Σ′,≤′, µ′] are two
pomsets. Then:

1. their concurrence p||p′ is the pomset [V ∪ V ′, Σ ∪Σ′,≤ ∪ ≤′, µ ∪ µ′], where
V and V ′ are assumed to be disjoint;

2. their concatenation p; p′ is as for concurrence except that instead of ≤ ∪ ≤′

the partial order is taken to be ≤ ∪ ≤′ ∪(V × V ′); and
3. their orthocurrence p× p′ is the pomset [V × V ′, Σ ×Σ′,≤ × ≤′, µ× µ′].
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