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Chu spaces, which derive from the Chu construct of∗-autonomous categories, can be
used to represent most mathematical structures. Moreover, the logic of Chu spaces is
linear logic. Most efforts to incorporate fuzzy set theory into the realm of linear logic
are based on the assumption that fuzzy and linear negation are identical operations.
We propose an incorporation based on the opposite assumption and we provide an
interpretation of some linear connectives. Furthermore, we show that it is possible to
represent any fuzzy relational structure as a Chu space by means of the functorG.
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1. Introduction

Linear logic1 is a logic which has been invented by Jean-Yves Girard while he was
working on the properties of coherent spaces. Linear logic is not just another logic, it is an
improvement of classical logic, i.e., linear logic attempts and solves most of the problems
of classical logic. From its discovery linear logic has found many application in computer
science, e.g., it is employed in the description of concurrent systems, in the design of new
programming languages that don’t need garbage collection, proof theory, etc.

Chu spaces2 are relatively new objects of mathematics which derive from the Chu con-
struct of∗-autonomous categories3 (4 is a comprehensive recent account of the Chu con-
struct). Chu spaces have been successfully used in many fields of science:

1
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• in the modeling of constraint-interval fuzzy set as a means of fuzzy decision making,5

• in the mathematical description of information flow,6

• in the description of concurrency,7

• in physics,8

• in philosophy,9

• in mathematics as a uniform representation of the objects of mathematical practice10

and of any relational structure,11 etc.

It is interesting to note that the logic of Chu spaces is linear logic.12

There have been some attempts to incorporate fuzzy logic into linear logic.13,14 All
attempts are based on the assumption that linear negation and fuzzy negation should be
treated as identical operations. Our approach departs from this assumption—we propose
an incorporation of fuzzy logic into linear logic via Chu spaces by distinguishing fuzzy
and linear negation. This distinction is justified by the fact that linear negation is a derived
operation, while fuzzy negation is a basic operation.

In this paper we provide an elementary introduction to the notions and concepts associ-
ated with linear logic, then we propose a representation of fuzzy subsets of some universal
set as Chu spaces and we provide an representation of the connectives of intuitionistic linear
logic. Moreover, we provide an representation of fuzzy negation as an operation between
Chu spaces. Next, we provide a construction by means of it one can represent any fuzzy
relational structure as a Chu space.

2. What is Linear Logic?

Linear logic is not just another logic, it is an improvement of classical logic. The basic
problem of classical logic, that is being solved by linear logic, is that ofstatic proposi-
tions—in classical logic a proposition is either true or false, but this can never change. In
general, this holds for all mathematical propositions, e.g., consider the proposition3 > 2.
However, there are propositions whose truth istemporal, e.g., the sentenceit’s Christmas
todayis true only once, or in general every 365 days or so.

But this isn’t the only problem of classical logic. Consider the following statements:

D
∆= one dollar

M
∆= a pack of Marlboros

C
∆= a pack of Camels

Moreover, suppose that the statementsD ⇒ M andD ⇒ C mean that we can buy a
pack of Marlboros with one dollar and that we can buy a pack of Camel’s with one dollar,
respectively. Then in classical logic we are allowed to conclude that

D ⇒ (M ∧ C)

That is, with one dollar we can buy a pack of Marlboros and a pack of Camel’s! Of course
this paradox is due to the interpretation of the connective∧ (“and”): if it means achoice
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between the two it is obviously true, but if it means simultaneous possession of both packs,
then it is obviously false. These two interpretations are implemented in linear logic as two
different conjunction connectives:& and⊗ respectively. Moreover, these connectives have
their duals: ⊕ (dual of&) expresses the choice between two possible types of action and
P (dual of⊗) expresses a dependency between two types of action.

Speaking of actions, linear logic assumes that a proposition is either asituation or
an action/reaction. Situations correspond to eternal truths, while actions and reactions
to propositions whose truth is temporal∗. In linear logic we are not allowed to use any
proposition more than once or to ignore it. However, this rule does not apply to situations,
if we use them in a controlled way. The new connectives (ormodalities) ! and? permit
us to consume and to produce, respectively, as many copies of some situation as we like.
Furthermore, linear logic provides the specialnull-ary connectives (orconstants) 1, ⊥, >,
and0 which are theneutral propositionsof the connectives⊗, P, &, and⊕ respectively.
Linear negation is a defined operation, while linear implication can be defined in terms of
the connectiveP as:A ( B = A⊥ P B. Note that it is possible to define the connectives
⊗ andP in terms of( and linear negation.

The following example, taken from,16 illustrates the use of the linear connectives and
their meaning:

Example 2.1 Suppose for a fixed$5 price a restaurant will provide a hamburger, a Coke,
as many French fries as you like, onion soup or salad (your choice), and pie or ice cream
(some else’s choice). One may encode this information in the linear logic formula beside
the menu:

Fixed – Price Menu:$5 (D ⊗D ⊗D ⊗D ⊗D)
Hamburger (

Coke [H ⊗ C ⊗ !F ⊗ (O & S)⊗ (O ⊕ I)]
All the french fries

you can eat
Onion Soup or Salad

Pie or Ice Cream
(depending on availability)

♦

3. Fuzzy Subsets as Chu Spaces

LetΣ be an arbitrary set without structure (or better: we aren’t interested in the structure
it may have). AΣ-Chu space is just a triplet(X, r,A), whereX andA are arbitrary sets and
r : X×A→ Σ. Functionr relates the elements ofX with the elements ofA. For example,
if A stands for the set of open subsets ofX, then forx ∈ X andA ∈ A the expression
r(x,A) is equal to one ifx belongs to the open subsetA, and zero otherwise. This way it
is possible to represent topological spaces and other relational structures in general.

∗The reader should not confuse linear logic with any temporal logic, as the first deals with the notion of time in a
rather deep way.15
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Remark 3.1 Categorically speaking, aΣ-Chu space is just an object of the categoryChu(Σ),
i.e., the categoryChu(Set,Σ) whereSet is the category of sets and functions, andΣ is a
set called thedualizing object.

Consider the I-Chu space(X, r,A), whereI = [0, 1]. Suppose thatX is some universal
set andA a set of fuzzy subsets of the universal set, thenr(x,A), wherex ∈ X andA ∈ A,
denotes thedegreeto which x is a memberof the fuzzy subsetA. We call such a Chu
space afuzzy Chu space(or FCS, for short). Note that in general the elements ofA are
not necessary elements of the setF(X) = IX , i.e.,A is an arbitrary set, which by means
of a bijection, corresponds to some setV ⊆ F(X). Since, fuzzy subsets usually denote
properties, it is useful to think ofr as a table that relates the variousindividualswith their
properties. The following example makes clear this idea.

Example 3.2 Let the setX = {x1, x2, . . . , xm} denote the contestants of a beauty contest
and the setA = {A1, A2, . . . , An} denote thequalitieseach contestant may have. More-
over, suppose that the following table provides an estimate of the degree to which each
contestant has each quality.


A1 A2 . . . An

x1 r1,1 r1,2 . . . r1,n

x2 r2,1 r2,2 . . . r2,n

...
...

...
...

...
xm rm,1 rm,2 . . . rm,n


Then r(xi, Aj) = ri,j , and so our beauty contest can be described by the Chu space
(X, r,A). ♦

Suppose thatA = (X, r,A) is a FCS and that the functioňr : A→ IX is an injection,
then the FCS(X,A) with r(x, A) being defined implicitly asA(x), provides an alternative,
more natural, representation of a set and (some of) its fuzzy subsets.

The dual of the FCSA = (X, r,A), denoted asA⊥, is defined to be the FCS(A, r̆ , X),
wherer̆ (A, x) = r(x, A). So, the dual space of a FCS is just another space which behaves
identically but reverses the order of the sets. Someone could say that it is the mirror image
of the original space. The dual of a Chu space corresponds to linear negation.

Suppose thatA = (X, r,A) is a FCS. Moreover, suppose that the setĀ consists of
the complementsof the elements ofA, then a bijectionϕ : A → Ā, defines the FCS
Ā = (X, r̄, Ā), such thatr(x,A) = 1− r̄(x, ϕ(A)). The FCSĀ is called thecomplement
FCS. The complement of a FCS corresponds to fuzzy negation.

LetA = (X, r,A) andB = (Y, s,B) be two FCS. Then a transformation fromA toB is
a pair of functions(f, f̄), such thatf : X → Y , f̄ : B→ A ands(f(x), B) = r(x, f̄(B)),
for all x ∈ X andB ∈ B. This condition is called theadjointness condition.

Proposition 3.3 The adjointness condition in the case of FCS is equivalent to the extension
principle of fuzzy set theory.
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Proof. We first recall theextension principleof fuzzy set theory: Any given function
f : X → Y induces two functionsf : F(X) → F(Y ) andf−1 : F(Y ) → F(X) such
that [f(A)](y) = supx|y=f(x) A(x) for all A ∈ F(X) and [f−1(B)](x) = B(f(x)) for
all B ∈ F(Y ). The meaning of the adjointness condition is that if we have a function,f :
X → Y then it induces the function̄f : F(Y ) → F(X) suchs(f(x), B) = r(x, f̄(B)).
If we let r(x,A) = A(x), then the adjointness condition becomes[f̄(B)](x) = B(f(x)),
which is exactly the extension principle.

We have defined a faithful way to describe the fuzzy sets of a given universal set as Chu
spaces. Moreover, it is now trivial to define the categoryChu(I) as follows:

(i) The objects of the category are FCS.

(ii) The morphisms of the category are pairs of functions that fulfill the adjointness con-
dition

(iii) Ajoint pairs A (f,f̄)−→ B (g,ḡ)−→ C, whereA = (X, r,A), B = (Y, s,B), C = (Z, t,C),
compose via(g, ḡ) ◦ (f, f̄) = (g ◦ f, ḡ ◦ f̄). This is obviously an adjoint pair since
t((g ◦ f)(x), C) = s(f(x), ḡ(C)) = r(x, (ḡ ◦ f̄)(C)).

(iv) The identity morphisms are pairs of identity functions.

Following2 we provide a representation of the various linear connectives.

Definition 3.4 Suppose thatA = (X, r,A) andB = (Y, s,B) are two FCSs, then the FCS

A ( B = (BA, t, X ×B)

wheret(f, (x,B)) = s(f(x), B), is the space of all transformations fromA toB. In order
to define the other linear connectives we use the fact that we can define both⊗ (tensor
product) andP (par) in terms of( and linear negation. Here are the details:

• A P B = A⊥ ( B = (BA⊥ , τ,A × B), whereτ(f, (A,B)) = s(f(A), B) and
f : A→ Y , and

• A⊗B = (A ( B⊥)⊥ = (X × Y, t̆ , (B⊥)A), wheret̆ ((x, y), f) = s̆ (f(x), y) and
f : X → B.

Next, we define thesumand theproductof any two FCS. Since, their definition make use
of the concept of thedirect sum, or just sum, of two setsA andB, denoted asA + B; we
take this opportunity to remind the reader thatA + B = {0} ×A ∪ {1} ×B.

Definition 3.5 The sum of two FCSA = (X, r,A) andB = (Y, s,B), denoted asA⊕B,
is the triplet(X + Y, t,A×B), wheret((x, y), (0, A)) = r(x,A) andt((x, y), (1, B)) =
s(y, B).

Definition 3.6 The product of two FCSA = (X, r,A) and B = (Y, s,B), denoted
asA & B, is the triplet(X × Y, t′,A + B), wheret((0, x), (A,B)) = r(x, A) and
t((1, y), (A,B)) = s(y, B).
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Moreover, the modality ! (pronounced:ofcourse) can be defined in the following way:

Definition 3.7 Let A be an arbitrary set and letMF(A) be

{M : A → N;M(a) > 0 for finitely manya ∈ A}

Let A = (X, r,A) be a Chu space. We writeM(A) for the set of pairs(ϕ̄, ϕ̂) with ϕ̄ :
X → [0, 1] andϕ̂ : X → MF(A) satisfying

r(x, A) = ϕ̄(x)

for all x ∈ X andA ∈ ϕ̂(x). Then the Chu space!A is defined as follows:

!A = (X, r!,M(A)).

Moreover,r!(x, ϕ) = ϕ̄(x).

We define now the four null-ary operators.⊥ = (I, π1, 1), where1 = {0} andπ1(i, 0) = i

for all i ∈ I, and1 = ⊥⊥ 0 = (∅, !, 1) and> = 0⊥.
We have provided a representation of all connectives of intuitionistic linear logic as Chu

spaces. Since, the logic of Chu spaces is the intuitionistic linear logic (and by this we mean
that the proof of a linear formula can be represented by Chu spaces), it is now possible to
exploit the possibility to employ fuzzy sets in linear logic reasoning.

4. Fuzzy Relational Structures and Chu Spaces

A fuzzy relational structureis a pair(A, ρ), whereA is any (crisp) set andρ ∈ IAn

(n ∈ N). For example, a binary fuzzy relationS over some setB, i.e.,S : B × B → I,
is denoted by(B,S). If (X, R) and(Y, Q) are fuzzy relational structures of ordern, and
h : X → Y a function, then we say thath is a relation morphismiff R(x1, . . . , xn) ≤
Q(h(x1), . . . , h(xn)) (see17 for more details).

Proposition 4.1 For any two fuzzy relational structures(A, ρ) and(B, σ) a relation mor-
phismf : A → B induces a functionf : F(An) → F(Bn), such thatf(ρ)(b) ≤ σ(b),
whereb = (b1, b2, . . . , bn).

Proof. Functionf : A → B induces a functionf : An → Bn in the obvious way.
Moreover, this new function induces a functionf : F(An) → F(Bn) (obviously,ρ ∈
F(An) andσ ∈ F(Bn)). Now according to the extension principle of fuzzy set theory,
we get thatf(ρ)(b) = supa|b=f(a) ρ(a), wherea = (a1, a2, . . . , an). We demand that a
morphism between two fuzzy relational structures is a function so that

f(ρ)(b) ≤ σ(b)

which is equivalent to

sup
a|b=f(a)

ρ(a) ≤ σ(b) ⇔

ρ(a) ≤ σ(f(a))
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Corollary 4.2 For any two relation morphisms(A, ρ)
f−→ (B, σ)

g−→ (C, τ), it holds that
(g ◦ f)(ρ)(c) ≤ τ(c).

Proof. The morphisms(A, ρ)
f−→ (B, σ)

g−→ (C, τ), imply thatf(ρ)(b) ≤ σ(b) and
g(σ)(c) ≤ τ(c). Based one these facts, the proof is easy:

(g ◦ f)(ρ)(c) = g
(
f(ρ)

)
(c)

= sup
b|c=g(b)

f(ρ)(b)

≤ sup
b|c=g(b)

σ(b)

= g(σ)(b)

≤ τ(c)

It is now possible to define a category,FStrn, of fuzzy relational structures of ordern as
follows:

(i) The objects of the category will be all the pairs(A, ρ), whereA is a (crisp) set and
ρ ∈ IAn

.

(ii) For any two objects(A, ρ) and(B, σ) a relation morphism is an arrow between them.

(iii) Arrow composition is the composition of relation morphisms.

(iv) The identity morphism for a relational structure(A, ρ), ρ ∈ IAn

, is a functionidρ

such thatρ(a) = ρ(idρ(a)).

Pratt has provided a construction, more specifically a functorF : Strn → Chu(2n),
by which one can transform any (crisp) relational structure into an object of the category
Chu(2n) (see11 for more details). We extend the results of Pratt by defining the functor
G : FStrn → Chu(In). The object part of it is defined as follows:

Definition 4.3 If (A, ρ) is a fuzzy relational structure, then the functorG sends it to the
triplet (A, r,X), whereX is a set that consists ofn-tuples of fuzzy subsets ofA, such that
for all x ∈ X,

∏
i xi ⊆ ρ̄. Moreover, letr : A×X → In be defined as follows:r(a, x)i =

xi(a). (This definition is an immediate result of thecylindrical extension principle.)

The following is an immediate result of the definition.

Corollary 4.4 G is injective on objects.

We now must find what is the relation between the original fuzzy relational structure and
the new Chu space.

Proposition 4.5 Suppose thata = (a1, a2, . . . , an), then for allx ∈ X:

ρ(a) ≤ max
{

r̄(ai, x)i, i = 1, . . . , n
}

.
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Proof.

ρ(a) = 1− ρ̄(a)

≤ 1−min
{

x1(a1), . . . , xn(an)
}

= max
{

1− x1(a1), . . . , 1− xn(an)
}

= max
{

1− r(a1, x)1, . . . , 1− r(an, x)n

}
= max

{
r̄(ai, x)i, i = 1, . . . , n

}
.

Note, that this means that the definition of Pratt in11 is a special case of our definition.
We define now the arrow part of the functor.

Definition 4.6 Suppose thatf : A → B is a function which induces the functionf−1 :
F(B) → F(A), such thatf−1(Bi)(a) = Bi(f(a)). Now, we demand that the functorG

maps any functionf : A → B to the pair of functions(f, f−1). Obviously, this means that
the pair of functions must fulfill the transformation condition between any two FCS, i.e.,

s(f(a), y) = r(a, f−1(y)),

which holds.

We prove the following important facts:

Theorem 4.7 The functorG is faithful and full.

Proof. That the functor is full is a direct consequence of Corollary 4.4. That it is faithful
is a direct consequence of its definition: for anyf1, f2 : (A, ρ) → (B, σ), it follows that if
G(f1) = G(f2), then(f1, f

−1
1 ) = (f2, f

−1
2 ) and sof1 = f2.

We conclude with an example of a fuzzy relational structure and the way one can represent
it as an object of some categoryFStrn and so as a Chu space.

Example 4.8 Because fuzzy logic is applied to a wide range of fields, not everyone agrees
on the form the basic logic connectives should have. For example one may opt to represent
logical disjunction as themax function or as the product of the two fuzzy logical values,
etc. Suppose thatX is a crisp set then the sextuple(F(X),∨,∧,¬, 0, 1) represents a
DeMorgan algebra, where∨ corresponds to disjunction,∧ to conjunction,¬ to negation
and0 and1 to the bottom and top elements of the algebra respectively. Each such sextuple
can be represented as by(I, ρ), whereρ is a set of quadruplets. The collection of all
such algebras forms a categoryFStr4. Consequently, it is possible to map every fuzzy
DeMorgan algebra to some Chu space. ♦



Fuzzy Relational Structures as Chu Spaces479

5. Conclusions

We have showed that it is possible to represent fuzzy sets of some universal set as Chu
spaces. Moreover, we have described a mechanism by means of it one can represent any
fuzzy relational structure as a Chu space. The important question that has to be answered is:
“What are the benefits of this approach?” The obvious answer to this question is that we get
an immediate way to embed linear logic in virtually all areas of science. Consequently, the
operators of linear logic get a concrete meaning for different cases. Since, Chu categories
are large categories they provide a uniform framework to deal with different objects of
mathematics that become objects of the same category. Another important aspect of this
representation is that we can get a new insight in areas where Chu spaces have already been
applied successfully, e.g., concurrency, quantum mechanics, etc.
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