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Uncertainty is an inherent property of all living systems. Curiously enough, computational models

inspired by biological systems do not take, in general, under consideration this essential aspect of

living systems. In this paper, after introducing the notion of a multi-fuzzy set (i.e. an orthogonal

approach to the fuzzification of multisets), we introduce two variants of P systems with fuzzy

components: P systems with fuzzy data and P systems with fuzzy multiset rewriting rules. By

silently assuming that fuzzy data are not the result of some fuzzification process, P systems with

fuzzy data are shown to be a promising step towards real hypercomputation. On the other hand, P

systems with fuzzy multiset rewriting rules are shown to be equivalent to fuzzy Turing machines.

The paper concludes with remarks concerning the present work and future research.
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In science we try to tell people things in such a way that they

understand something that nobody knew before. In art, one

takes something everyone knows and tries to express it in

ways nobody ever thought before.

Based on a dialogue from John L. Casti (2003), The One

True Platonic Heaven: A Scientific Fiction on the Limits of

Knowledge, Joseph Henry Press, Washington, DC, 2003.

1. INTRODUCTION

P systems [1], a new promising model of computation,

inspired by the way cells live and function, are built around

the notion of nested compartments surrounded by porous

membranes (hence the term membrane computing). It is

quite instructive to think of the membrane structure as a

bubbles-inside-bubbles structure, where we have a bubble

that contains bubbles, which, in turn, contain other bubbles

etc., or like the fractal that is shown in Figure 1. Initially, each

compartment contains a number of possible repeated objects

(i.e. a multiset of objects). Once ‘computation’ commences,

the compartments exchange objects according to a number

of multiset processing rules that are associated with each

compartment; in the simplest case, these processing rules

are just multiset rewriting rules. The activity stops when no

rule can be applied any more. The result of the computation is

equal to the number of objects that reside in a designated

compartment called the output membrane. Equivalently,

we can construct a grammar simulating a given system P.

Although there are many different forms of P systems,

these will not concern us here. The interested readers

should consult [2], the standard reference on P systems, for

more information.

Fuzzy set theory is a theory that generalizes the concept

of the set (for an overview, for example, see [3]). In fuzzy

set theory, an element of a fuzzy subset belongs to it to a

degree, which is usually a number between 0 and 1. Ever

since its inception by Lotfi Asker Zadeh, fuzzy set theory

prompted many researchers to fuzzify (i.e. to ‘soften’ rigid

categorization of) other mathematical structures. Practically,

this meant that, during the fuzzification process of a particular

structure, one had to ‘soften’ the way the properties of a

particular member of a group related to the properties of

the group. Fortunately, the subsequent fuzzification ‘storm’

was not just based on a mere mathematical curiosity, but on

real grounds. For example, rigid mathematical models

employed in biology are not completely adequate for the

interpretation of biological information. This fact has led to

the adoption of new models and methodologies that are based

on fuzzy set theory (for example, see [4]). Consequently, the

fuzzification of P systems is a quite reasonable development.

Indeed, P�aaun discusses in [2, p. 365] the idea of approximate

computing in the framework of P systems theory

(i.e. P systems with non-classical components). Now, if we

are interested in fuzzifying P systems, we need to fuzzify

one or all of their characteristics. In particular, this means

that we can have P systems with fuzzy processing rules

and/or with fuzzy data. However, since the theory of

P systems does not make any assumption regarding the size

of the compartments, it makes no sense to fuzzify the

notion of the membrane.
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In his seminal paper from 1986 [5], Yager introduced

fuzzy multisets, i.e. structures that can be characterized by

higher-order functions X ! I ! N0, where I ¼ [0, 1] and

N0 is the set of natural numbers including zero. (It is not

difficult to see that a fuzzy multiset A can also be

characterized by a function X · I ! N0.) More specifically,

a fuzzy multiset is a structure that consists of multiple

copies of objects that belong to the fuzzy multiset to

different degrees. However, it is more natural to start with

an ordinary multiset and then to define its fuzzy sub-

multisets, just like we define fuzzy subsets starting from a

(crisp) set.

Assume that X is a universe (i.e. a fixed set), then a func-

tion A : X ! I characterizes any fuzzy subset A of X. In

particular, A(x) ¼ i means that x belongs to A to degree i.

Suppose that M is a multiset whose support is X. M is char-

acterized by a function X ! N0, such that M(x) ¼ m means

that M contains m copies of x. Now, it is quite natural to

demand that a fuzzy sub-multiset of M is a structure that is

characterized by a function X ! N0 ! I. However, it turns

out that this is a really general structure that we will briefly

discuss later on. On the other hand, a more natural choice

is to have functions X ! N0 · I to characterize our fuzzy

sub-multisets, which we have dubbed multi-fuzzy set to dis-

tinguish them from Yager’s fuzzy multisets. Thus, given

a multiset M : X ! N0, such that M(x) ¼ n, and a multi-

fuzzy set M : X ! N0 · I, the expression M(x) ¼ (n, i) will

denote that these n copies of x belong to M to a

degree i.

I think this is the right place to briefly discuss a few philo-

sophical issues regarding fuzzy sets, in general. First of all,

one should not forget that sets are used to model almost

everything. In addition, fuzzy subsets are an extension of

the classical notion of a set, which was introduced out of

the necessity to model vagueness, something so common in

our everyday life. For instance, consider a group of people

and suppose we have to form a set that will model the sub-

group of people that are tall. Clearly, there are no universally

accepted criteria that can be used to say that some ordinary

Joe is either tall or not tall. For example, if Joe is 1.80 m

tall can we say for sure whether he is tall or not? Obviously,

if the group of people consists of basketball players, then it

is quite possible that Joe is rather short; otherwise, one may

say that Joe is rather tall. Certainly, it is far better to say that

Joe is tall to degree i1 2 I or tall to degree i2 2 I instead of

saying that Joe is ‘rather short’ or ‘rather tall’. What if our

original set was not really a set but rather a multiset. Quite

naturally, there are a number of people that have exactly the

same height (e.g. Joe and his friend Al are exactly 1.80 m

tall), and these people are again ‘rather short’ or ‘rather tall’,

if we adopt our verbal classification instead of the numerical

one. However, one can say that these two men are tall to

degree i1 or i2 respectively. So, fuzzy sets and mutli-fuzzy

sets provide a systematic way to deal with vagueness. But

one should be careful and not confuse vagueness with lack

of information. When we say that something is fuzzy, we

mean that there is no sharp way to distinguish between prop-

erties, attributes etc. In addition, probability and fuzziness

are two entirely different things. One may say, that a prob-

ability is a mathematical characterization of the lack of

information regarding the plausibility of some phenomenon,

event etc. Thus, when we say that Joe is tall with probability i,

this clearly indicates lack of information. But we will have

the chance to touch this issue again in Section 3.

In Section 4 we present P systems with fuzzy data that are

capable of computing real numbers. Naturally, the idea of

computational devices that compute real numbers is not

novel. For example, Alan Turing studied real-number com-

putability since 1936. Also, Blum et al. [6] have developed

the so-called BSS-machine (a sort of Turing machine) that is

capable of handling real numbers and real number functions.

In addition, Ziegler has examined in [7] the prospects of

real number (hyper-)computation in the framework of Type

2 computability theory (see [8] for an overview of Type 2

computability theory). A common characteristic of these

computational models is that they treat real numbers as

real entities and they transcend the capabilities of the

Turing machine. In addition, we should note that Wegner

discusses in [6] super-Turing computation in the framework

of interactive computation, while Kieu advertizes in [10]

the idea that quantum computers are able to solve problems

which cannot be computed by the universal Turing machine.

This ‘peculiarity’ of the BSS-machines and the related

FIGURE 1. A fractal that resembles the membrane structure of a

P system.
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computational models have led a number of researchers and

thinkers to manifest that hypercomputation [11] includes

models of computation that are indeed more powerful than

Turing machines. Consequently, they claim that hyper-

computation falsifies the Turing–Church thesis. However,

we should note that not everybody shares this idea. For

example, Cotogno [12] believes that real-number com-

putation does not really go beyond the Church–Turing

barrier. On the other hand Ord and Kieu show in [13]

that the arguments employed to refute hypercomputation

are flawed. And this, of course, is an evidence that the

polemics between proponents and opponents of hypercom-

putation is quite active.

Structure of the paper. We start by formally defining

multi-fuzzy sets, possible extensions of the concept and

their properties. In addition, we present the theory of fuzzy

grammars (FGs) and the concept of a fuzzy rewriting rule.

Next, P systems with fuzzy data (i.e. P systems where each

compartment is populated with multi-fuzzy sets) are defined.

We continue with the presentation of P systems with fuzzy

multiset rewriting rules. Furthermore, there is a brief

discussion about P systems with both fuzzy data and fuzzy

rewriting rules. We conclude with remarks concerning the

present work and future research.

2. FUZZIFYING MULTISETS

As it has been noted in the introduction, fuzzy multisets have

been introduced by Yager. Formally, a fuzzy multiset is a

mathematical structure that can be characterized by a function

X ! I ! N0, where X is some fixed set. Clearly, a fuzzy

multiset can be modelled by a function X · I ! N0, where

the mapping (x, i) 7! n denotes that these n copies of x belong

to the fuzzy multiset to degree equal to i. More generally, one

can replace the unit interval with a frame L and get L-fuzzy-

multisets. Note that a partially ordered set is a frame iff

(i) every subset has a join

(ii) every finite subset has a meet

(iii) binary meets distribute over joins

x ^
_

Y ¼
_

fx ^ y : y 2 Yg:

Miyamoto has exemplified in his work (see [14]) that Yager’s

definitions are somehow inadequate, since one cannot easily

perform the basic multiset operations (e.g. intersection,

union etc.). Thus, he proposed a better formulation, which,

however, does not change the essence of the initial definition.

Intuitively, fuzzy multisets model the case where a number

of otherwise indistinguishable objects possess a particular

property to a certain degree. (Note that the number of

indistinguishable objects is called its multiplicity.) However,

it is quite surprising that another number of these objects

may belong to a different degree to the same fuzzy multiset.

Thus, in order to get out of this awkward situation, we start

from a multiset and define its multi-fuzzy (sub-)sets. Let us

now proceed with the formal definition of these structures.

DEFINITION 1. Assume that M : X ! N0 characterizes a

multiset M, then a multi-fuzzy subset of M is a structure A

that is characterized by a function M : X ! N0 · I, such that

if M(x) ¼ n, then AðxÞ ¼ ðn‚ iÞ. In addition, the expression

AðxÞ ¼ ðn‚ iÞ denotes that the degree to which these n copies

of x belong to A is i.

Obviously, one can go further and extend the definition

above. For example, L-multi-fuzzy sets have been introduced

in [15].

DEFINITION 2. Suppose that the set W is a (fixed) universe,

L a frame, and M : W ! N0 is a multiset, then an L-multi-

fuzzy set is characterized by a function X : W ! N0 · L. The

expression XðxÞ ¼ ðn‚ ‘Þ denotes that M(x) ¼ n and that the

degree to which these n copies of x belong to X is equal to ‘.

Starting from a multi-fuzzy set A, we can define the fol-

lowing two functions: the multiplicity function Am : X ! N0

and the membership function Am : X ! I. Obviously,

if AðxÞ ¼ ðn‚ iÞ, then AmðxÞ ¼ n and AmðxÞ ¼ i.

REMARK 1. Any ordinary set A � X is identical to the

multi-fuzzy set A defined as follows:

AðaÞ ¼ ðxAðaÞ‚ 1Þ‚ 8a 2 X‚

where xA is the characteristic function of A. In addition, any

fuzzy set A : X! I is identical to the multi-fuzzy setA0 defined
as follows:

A0ðaÞ ¼ ð1‚ AðaÞÞ‚ 8a 2 X:

Similarly, any multisetM : X ! N0 can be represented by the

multi-fuzzy set as follows:

MðaÞ ¼ ðMðaÞ‚ 1Þ‚ 8a 2 X:

The cardinality of multi-fuzzy sets is defined as follows.

DEFINITION 3. Suppose that A is a multi-fuzzy set having

the set X as its universe, then its cardinality, denoted card A,

is defined as

cardA ¼
X
a2A

AmðaÞAmðaÞ:

REMARK 2. Obviously, the previous definition gives the

expected results for the special cases we discussed in the

remark above.

Operations on multi-fuzzy sets. Assume that X and Y are two

multi-fuzzy sets with the universe set Z, then their union,

intersection, sum and their difference are defined as follows:

DEFINITION 4. (Union of multi-fuzzy sets).

ðX [ YÞðzÞ ¼ ðmaxfXmðzÞ‚ YmðzÞg‚ max xfXmðzÞ‚ YmðzÞgÞ:
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Notice that in the case of multisets the union is defined in

terms of the max operator. Also, the typical definition of

fuzzy subset intersection is given in terms of max. Thus,

the definition above is fully justified. Similarly, since the

operations of set intersection for both multisets and fuzzy

subsets are defined in terms of the min operator, the following

definition is completely reasonable:

DEFINITION 5. (Intersection of multi-fuzzy sets).

ðX \ YÞðzÞ ¼ ðminfXmðzÞ‚ YmðzÞg‚ minfXmðzÞ‚ YmðzÞgÞ:

The sum is an operation that is defined only for multisets

and it is actually a generalization of the union, it really makes

sense to use the max operator to define the membership

degrees, while the multiplicity is defined as usual.

DEFINITION 6. (Sum of multi-fuzzy sets).

ðX ] YÞðzÞ ¼ ðXmðzÞ þ YmðzÞ‚ maxfXmðzÞ‚ YmðzÞgÞ:

For reasons similar to the previous case, the difference of

two multi-fuzzy sets is defined as follows.

DEFINITION 7. (Difference of multi-fuzzy sets).

ðX� YÞðzÞ ¼ ðmaxfXmðzÞ � YmðzÞ‚ 0g‚ minfXmðzÞ‚ YmðzÞgÞ:

Some properties of the operations between multi-fuzzy sets

are presented below.

THEOREM 1. For any three multi-fuzzy sets A, B and C

having Z as their common universe, the following equalities

hold:

(i) Commutativity:

A [B ¼ B [A

A \B ¼ B \A

A ]B ¼ B ]A;

(ii) Associativity:

A [ ðB [ CÞ ¼ ðA [BÞ [ C

A \ ðB \ CÞ ¼ ðA \BÞ \ C

A ] ðB ] CÞ ¼ ðA ]BÞ ] C;

(iii) Idempotency:

A [A ¼ A

A \A ¼ A;

(iv) Distributivity of union and intersection:

A [ ðB \ CÞ ¼ ðA [BÞ \ ðA [ CÞ
A \ ðB [ CÞ ¼ ðA \BÞ [ ðA \ CÞ;

(v) Distributivity of sum:

A ] ðB [ CÞ ¼ ðA ]BÞ [ ðA ] CÞ
A ] ðB \ CÞ ¼ ðA ]BÞ \ ðA ] CÞ:

Proof. We will prove only that the operators are commut-

ative, as the other properties can be proved similarly.

ðA [BÞðzÞ ¼ ðmaxfAmðzÞ‚BmðzÞg‚ minfAmðzÞ‚BmðzÞgÞ
¼ ðmaxfBmðzÞ‚AmðzÞg‚ minfBmðzÞ‚AmðzÞgÞ
¼ ðB [AÞðzÞ:

ðA \BÞðzÞ ¼ ðminfAmðzÞ‚BmðzÞg‚ minfAmðzÞ‚BmðzÞgÞ
¼ ðminfBmðzÞ‚AmðzÞg‚ minfBmðzÞ‚AmðzÞgÞ
¼ ðB \AÞðzÞ:

ðA ]BÞðzÞ ¼ ðAmðzÞ þBmðzÞ‚ ðAm þBmÞðzÞÞ
¼ ðBmðzÞ þAmðzÞ‚ ðBm þAmÞðzÞÞ
¼ ðB ]AÞðzÞ:

Clearly, the equality ðAm þBmÞðzÞ ¼ ðBm þAmÞðzÞ follows

from the commutativity of addition and multiplication. &

Going one step ahead. Let us now see how we can define

a multi-fuzzy set whose elements may belong a number of

different times to some degree. Here is a formal definition.

DEFINITION 8. A general multi-fuzzy set is a structure that

is characterized by a higher-order function X ! N0 ! I.
In other words, this is a structure whose elements are multi-

sets that belong to the general multi-fuzzy set to a degree.

Of course, one can extend the previous definition even

further and introduce general L-multi-fuzzy sets, but since

the definition is straightforward, we omit it mainly for reasons

of brevity.

3. FUZZY REWRITING RULES

If we consider the multisets contained in the various com-

partments of a P system as the data of a computer program,

then the evolution rules are the instructions that make up

the program. We have already managed to provide ways to

fuzzify the data of our programs. Now we will see how we

can fuzzify the instructions.

The obvious way to fuzzify the multiset rewriting rules

associated with each compartment is to assign an ‘execution’

degree to each rule. This execution degree will denote the

degree to which a given applicable rule can be used in a

particular step. At first glance this construction may seem

familiar. One may take a P system with fuzzy multiset

rewriting rules for a probabilistic P system (see [16] for an

overview and [17] for a first study of probabilistic rewriting

P systems). However, this assumption is completely false.

First of all, in a probabilistic system the minimum

requirement is that the probabilities of all rules must add

together to one, while this is not necessary for the

‘execution’ degrees assigned to each rule. More generally,

fuzzy set theory deals with the likelihood of an event, while

probability theory with the extent of that event. In fact, from

a mathematical perspective, fuzzy sets and probability exist
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as parts of a greater Generalized Information Theory that

includes many formalisms for representing uncertainty

(including random sets, Demster–Shafer evidence theory,

probability intervals, possibility theory, general fuzzy

measures, interval analysis etc.). Furthermore, one can also

talk about random fuzzy events and fuzzy random events.

This whole issue is beyond the scope of this paper, and the

reader should refer to [18] for details.

In order to understand fuzzy rewriting rules, we need to

grasp the notion of a FG. The following definition is a more

formal version of the corresponding definition found in [3]:

DEFINITION 9. A fuzzy grammar, FG, is defined by the

quintuple

FG ¼ ðVN‚ VT‚ S‚ P‚ AÞ‚

where

� VN is the set of non-terminal symbols;

� VT is the set of terminal symbols (VT \ VN ¼ ;);
� S 2 VN is the starting symbol;

� P is a finite set of production rules of the form a ! b,

where a 2 (VT [ VN)* VN(VT [ VN)
� and b 2 (VT [ VN)*

(i.e. a must contain at least one symbol from VN); and

� A is a fuzzy subset

A : P ! I:

The value A(p) is the grade of applying a production

p 2 P.

For s, c 2 (VT [ VN)
�, s is said to be a direct derivative

of c, written as c ) s, if there are (possibly empty) strings

f1 and f2 such that c ¼ f1af2, s ¼ f1bf2, and a ! b is a

production of the grammar. The string c produces s, written

as c )
þ
s if there are strings f0, f1, . . . ,fn (n > 0), such that

c ¼ f0 ) f1‚ f1 ) f2‚ . . . ‚ fn�1 ) fn ¼ s:

A string a 2 V*
T is a sentential form of FG if it is a derivative

of the unique non-terminal symbol S.

A string a 2 V*
T is said to belong to the fuzzy language

L(FG) if and only if a is a sentential form. In addition, the

degree to which a belongs to L(FG) is

max
1�k�n

min
1�i�‘k

Aðpki Þ‚ ð1Þ

where n is the number of different derivatives, ‘k is the length

of the k-th derivative and pki denotes the i-th direct derivative

in the k-th derivative (i ¼ 1, 2, . . . , ‘k).
It is not difficult to extend the previous definition. So

instead of the standard intersection and union operators

(i.e. min and max respectively), one can use a t-norm and

the corresponding t-conorm. A t-norm u : I · I ! I is a

function with the following properties:

(i) a u 1 ¼ a,

(ii) b � c implies a u b � a u c,

(iii) a u b ¼ b u a,

(iv) a u (b u c) ¼ (a u b) u c,

while a t-conorm t : I · I ! I is a function with the following

properties:

(i) a t 0 ¼ a,

(ii) b � c implies a t b � a t c,

(iii) a t b ¼ b t a,

(iv) a t (b t c) ¼ (a t b) t c.

Now, Equation (1) can be rewritten more generally as

Gn
k¼1
u‘k
i¼1

Aðpki Þ:

Since rewriting rules are actually productions that are

applied to a starting string repeatedly, a fuzzy rewriting

rule is just a crisp rewriting rule associated with a truth

degree.

DEFINITION 10. Let V be a finite set of symbols, then a fuzzy

rewriting rule has the following form

a �!r b‚

where a, b 2 V� and r 2 I indicate the plausibility that a is

reduced to b in a derivation step.

FGs are not just the product of the fuzzification ‘storm’

mentioned in the introduction. On the contrary, they are

quite useful structures as they have found various uses

especially in artificial intelligence. Let us give a simple

example of their use borrowed from [19]. Suppose we

want to construct a system capable of recognizing simple

(geometric) shapes in an image. In addition, assume that we

have a FG that can be used to draw very simple houses. If a

given string s belongs to this grammar with a degree d, then

this practically means that we are sure that the drawing

generated by s depicts a house with degree equal to d. Thus,

an object that appears in an image and identical (?) to the

drawing generated by s is recognized as a house with degree

equal to d.

4. P SYSTEMS WITH FUZZY DATA

In the previous sections it was shown how one can fuzzify the

basic ‘ingredients’ of P systems, that is the multisets and the

multiset rewriting rules. In this section we show how we can

build P systems with fuzzy data. But first, let us explain

why we have opted to use multi-fuzzy sets instead of fuzzy

multisets.

It is a fact that the number computed by a P system is equal

to the cardinality of the multiset contained in the output

membrane. Ergo, a P system with fuzzy data is one where

the various objects belong to a compartment to some degree.

Certainly, one may argue that using fuzzy multisets is a

more natural choice. However, as we have already explained

Fuzzifying P Systems 623
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multi-fuzzy subsets are formed from some multiset and since

multisets are the data manipulated by P systems, it is abso-

lutely reasonable to use these structures instead of fuzzy

multisets.

Suppose that we have a membrane structure and each com-

partment is populated with a multi-fuzzy set. In addition,

assume that each compartment is associated with a finite

number of multiset rewriting rules. Assume that the degree

to which the n copies of a belong to a designated compart-

ment A is i; also the degree to which the m copies of a belong

to a designated compartment B is j. If there is a rule that

moves as from A to B, then, after using this rule, the degree

to which the compartment B will contain a multi-fuzzy set

with n + m copies of as will be equal to max{i, j} (i.e. we sum

up the two multi-fuzzy sets). In the end, the result of the

computation is equal to the cardinality of the output compart-

ment. However, here we are facing a very serious problem:

the cardinality of the output membrane is usually a (positive)

real number and as such it makes no sense (at least in the

discrete case). One solution is to defuzzify the result by intro-

ducing a threshold parameter, l 2 I, which can be used to

define a crisp cardinality for the multi-fuzzy sets as follows:

cardlA ¼
X
a2A

dðl‚ aÞAmðaÞ‚

where d(l, a) is a defuzzification function

dðl‚ aÞ ¼
�
1‚ if AmðaÞ � l

0‚ otherwise:

Equipped with the above-mentioned definitions and remarks,

we are ready to provide a formal definition of P systems

with fuzzy data (the reader is assumed to be familiar with

basic elements of membrane computing; for instance,

a good reference is [2]).

DEFINITION 11. A P system with fuzzy data is a construct

PFD ¼ ðO‚ m‚ wð1Þ‚ . . . ‚ wðmÞ‚ R1‚ . . . ‚ Rm‚ i0‚ lÞ‚
where

(i) O is an alphabet (i.e. a set of distinct entities) whose

elements are called objects;

(ii) m is the membrane structure of degree m � 1; mem-

branes are injectively labeled with succeeding natural

numbers starting with one;

(iii) wðiÞ : O ! N0 · I, 1 � i � m are functions that

represent multi-fuzzy sets over O associated with

each region i;

(iv) Ri, 1 � i � m, are finite sets of multiset rewriting

rules (called evolution rules) over O. An evolution

rule is of the form u ! v, u 2 O� and v 2 O*
TAR,

where OTAR ¼ O · TAR, TAR ¼ {here, out} [ {inj
j 1 � j � m}. The effect of each rule is the removal of

the elements of the left-hand side of each rule from the

‘current’ compartment and the introduction of the ele-

ments of right-hand side to the designated compart-

ments;

(v) i0 2 {1, 2, . . . ,m} is the label of an elementary mem-

brane (i.e. a membrane that does not contain any

other membrane), called the output membrane and

(vi) l 2 [0, 1] is a threshold parameter, which is used in

the final estimation of the computational result.

Let us denote with sP0 ‚ s
P
1 ‚ . . . ‚ s

P
n the sequence of numbers

computed by a P system P with fuzzy/crisp data, then the

following is a direct consequence of the definition of the

cardinality of multi-fuzzy sets.

PROPOSITION 1. Assume that PFD is a P system with fuzzy

data whose threshold parameter is l. In addition, assume

that P is the corresponding P system with crisp data, then

s
PFD � sPi
i for all i 2 N.

Although Definition 11 is reasonable enough, it is not

really clear whether it is necessary to defuzzify the result of

the computation. Naturally, it makes sense to go on with the

defuzzification process, once we have data that are the result

of a fuzzification process. However, it is quite possible that

the data are not the result of some fuzzification process. Thus,

P systems with fuzzy data produce, in general, real positive

numbers and so, unexpectedly, extend their computational

power. Naturally, one may view such systems as a form of

hypercomputational machines. However, it is too soon to

jump into any definitive conclusions. As an example, let us

consider the following P system with fuzzy data:

This P system contains n objects in compartment 1, which will

be transferred into compartment 2. If we decide to skip the

defuzzification step, the result of the computation (i.e. the car-

dinality of the multi-fuzzy set contained in compartment 2) is

equal to n/m. Thus, the result of this particular computation is a

positive rational number. However, there is nothing that pre-

vents one from computing any real number, if we assume that

objects may have real numbers as membership degrees. Indeed,

the following theorem makes this explicit.

THEOREM 2. P systems with fuzzy data can compute any

positive real number.
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Proof. Assume that y 2 R
þ
0 (i.e. the set of all positive reals

including zero), then y ¼ x + n, where x 2 [0, 1] and n 2 N.

Let us now construct the following P system.

Notice that an
x means that there are n copies of a that belong

to the compartment to degree equal to x. When this P system

will halt, the cardinality of the multi-fuzzy set that is con-

tained in compartment 2 will be equal to y. Thus, trivially,

P systems such as this can compute any real number.

&

In addition, it is quite possible to compute even negative real

numbers, if we opt to have a P system with a fuzzy version

of the so-called hybrid sets [20]. However, one has to justify

the use of these structures and also to carefully investigate

the properties of the resulting systems.

Skeptic readers may doubt whether P systems with fuzzy

data (i.e. systems whose compartments are populated with

multi-fuzzy sets) can actually compute any real number at

all. In particular, these skeptic readers may argue that by

associating a number (i.e. a membership degree) to a group

of identical objects, one does not get a concrete way to

represent a number. Before going on, I believe it is rather

important to note that a Turing machine or a P system per-

forms a computation just because we, as external observers,

are inclined to perceive their operation as computation.

In addition, it is up to us to associate the final state of a

‘computing’ device to a number, which is the outcome of

the computation. In the case of P systems with fuzzy data,

the input data are represented by a multi-fuzzy set and the

output is the cardinality of a multi-fuzzy set. In other words,

the multi-fuzzy set contained in the output compartment

represents a number. Whether we can ‘translate’ this number

into a familiar notation is an entirely different issue, which

will not concern us here.

Another objection that may be posed is that one cannot

have as input and, consequently, as output irrational numbers.

First of all, one should notice that there are at least three

irrational numbers that affect our lives in many different,

and sometimes profound, ways. These numbers are the num-

ber p, the number e and the number f (the golden ratio).

In particular, p appears in many equations describing

fundamental principles of the universe. For instance,

Coulomb’s law for the electric charge

F ¼ jq1q2j
4pe0r2

and Heisenberg’s uncertainty principle

DxDp � h

4p

are such equations. Clearly, in physics we work with approx-

imations, but, on the other hand, these equations describe real

phenomena and, of course, p is an important part of the

description of these phenomena in spite of the fact that we

cannot represent it by conventional means. On the other hand

a circle with radius 1 unit is a faithful representation of 2p.

Similarly, one can say that the multi-fuzzy set contained in

the output compartment after the operation of the system has

ceased is a representation of p or, for that matter, of any

irrational number.

We have demonstrated that P systems with fuzzy data are

capable of computing real numbers. Also, in the introduction

we have discussed some foundational approaches to real

number computation. Consequently, one may jump into the

conclusion that P systems with fuzzy data are indeed a form

of hypercomputation. But we repeat and emphasize that it is

too early for such a definitive conclusion. On the other hand,

it is an open problem whether P systems with fuzzy data,

which fully interact with their environment, are really capable

of hypercomputation.

5. P SYSTEMS WITH FUZZY MULTISET

REWRITING RULES

The idea behind P systems with fuzzy multiset rewriting

rules is the fuzzification of the macro-step process. In other

words, by fuzzifying the multiset rewriting rules, we intro-

duce a truth degree associated with each step. In the end,

these degrees are used to estimate the truth degree of the

computation.

A P system with fuzzy multiset rewriting rules and crisp

data is just an ordinary P system that has, in addition, a cor-

responding fuzzy set for each set Ri of multiset rewriting. A

P system with multiset fuzzy rewriting rules will compute a

number to some degree. Clearly, such systems must also obey

the so-called maximal parallelism principle, that is the rules

should be selected in such a way that only ‘optimal’ output

will be yielded. Thus, P systems with fuzzy multiset rewriting

rules differ fundamentally from P systems with probabilist

rewriting rules in that there is no bias in the selection of

the rules.

DEFINITION 12. A P system with fuzzy multiset rewriting

rules is a construct

PFR¼ðO‚ m‚w1‚ . . .‚ wm‚ R1‚ . . .‚ Rm‚ s1‚ . . .‚ sm‚ i0‚ u ‚ tÞ‚

where each si : Ri ! I is a fuzzy set defined over Ri, u is a

computable t-norm and t a computable t-conorm. All other

components are identical to those of an ordinary P system.
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In the previous definition, we demanded that both the

t-norm and the t-conorm are computable in order to avoid

problems of an entirely different nature. When we say

computable we mean that there is an effective procedure1

by means of it we can compute their values for all possible

arguments.

When a P system with fuzzy multiset rewriting rules halts,

the result of the computation up to some degree is equal to the

cardinality of the multiset contained in the output compart-

ment. Clearly, it is also necessary to know how to compute

the truth degree that is associated with the computational

result. More specifically.

DEFINITION 13. Assume that in the end of the computation

the output compartment i0 contains copies of the objects

b1,b2, . . . ,bn. For each bi we compute the quantity

rti ¼ tk
j¼1 rj, where rj is the ‘likelihood’ degree of each of

the rules rj that produce bi. The ‘likelihood’ degree of the

computation, ru, is equal to un
j¼1r

t
j .

EXAMPLE 1. Consider the following P system with fuzzy

multiset rewriting rules:

Suppose that this system halts after n steps, then the crisp

result of the computation will be equal to 6n. Now, the degree

to which 6n is the result of the fuzzy P system is just r2. Note

that this example is actually a fuzzy equivalent of the example

given on [2. p. 56].

Fuzzy Turing machines (for example, see [21, 22]) are

computational models where each transition is associated

with a truth degree. Clearly, it is interesting to see whether

there is some connection between fuzzy Turing machines

and P systems with fuzzy data. Although the notion of

fuzzy Turing machines appeared a long time ago, still it is

a concept that is not widely known.

Suppose that U and V are two non-empty sets and that

f : U ! V is a function, which is not necessarily total, then

a W-function, fW, associated to f is a (partial) function that

maps elements from U · V to members of the semiring2

(W, u, t). More specifically, if f(u) ¼ v, then fW (u, v) denotes

the degree to which we are certain that the computation f(u)

yields the result v. Let us now proceed with the definition of

the Santos type fuzzy Turing machine [23]:3

DEFINITION 14. A Santos type fuzzy Turing machine is a

septuple

ðS‚Q‚ qi‚ qf ‚ d‚W‚ dWÞ:
where

(i) S represents a finite non-empty set of input symbols,

(ii) Q denotes a finite non-empty set of states such that

S \ Q ¼ ;,
(iii) qi, qf 2 Q are the symbols designating the initial and

final states respectively,

(iv) d � (Q · S ) · (Q · (S · {�1, 0, 1})) is the next-move
relation,

(v) W is the semiring (W, ^, _),
(vi) dW : (Q · S) · (Q · (S · {�1, 0, 1})) ! W is a

W-function that assigns a degree of certainty to

each machine transition.

Assume that hW(Ci, Ci+1) denotes the degree of reachabil-

ity of Ci+1 from Ci, then, in the case of a deterministic fuzzy

Turing machine, the degree of certainty of a particular com-

putation that starts from C0 and finishes at Cn (denoted by

G(C0, Cn)) is given by the following formula:

GðC0‚CnÞ ¼ hWðC0‚ C1Þ ^hWðC1‚ C2Þ ^ � � � ^hWðCn�1‚ CnÞ:

In the case of a non-deterministic fuzzy Turing machine,

G(0, n) denotes the set of truth degrees of a computation

that starts from C0 and finishes at Cn. In addition, the truth

degree of this computation is

GðC0‚ CnÞ ¼
_�

g2Gð0‚ nÞ
g‚

where
W� denotes the transitive closure of

W
(i.e. the smallest

fuzzy relation that contains
W

and is transitive).

THEOREM 3. For every P system with fuzzy multiset rewrit-

ing rules there is a fuzzy Turing machine that computes

exactly the same set of numbers.

Sketch Proof. It has been proved that fuzzy Turing

machines and crisp Turing machine have exactly the same

computational power. In addition, it is known that a class

of P systems with multiset rewriting rules have at least the

computational power of Turing machines. In particular, this

class of P systems includes system transition P systems

and P systems with cooperating rules, systems with bi-stable

catalysts, systems with plain or bi-stable catalysts and

1I will not make any attempt to provide a precise definition of the term

‘effective’. I will assume the ‘usual’ meaning of the word.
2A semiring is a set together with two binary operators (S, 	, 
) satisfy-

ing the following conditions:

(i) Additive associativity: for all a, b, c 2 S, (a	) 	 c ¼ a 	 (b 	 c),
(ii) Additive commutativity: for all a, b 2 S a 	 b ¼ b 	 a,

(iii) Multiplicative associativity: for all a, b, c2 S, (a
 b)
 c¼ a
 (b
 c),
(iv) Left and right distributivity: For all a, b, c 2 S, a 
 (b) 	 c) ¼

(a 
 (b) 	 (a 
 c) and (b 	 (c) 
 a ¼ (b 
 a) 	 (c 
 a).

3A referee has pointed out that Santos wrote his important paper in 1970,

while t-norms and t-conorms gained widespread acceptance in the 80s. Thus,

if Santos would have known t-norms and t-conorms he would not had used

semirings.
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priorities among rules, systems with plain catalysts, permeab-

ility control and dissolution agents, and systems with non-

cooperating rules that create rules during the computation.

Clearly, both transition P system with fuzzy rewriting rules

and their crisp counterparts produce the same output. They

differ in that the former produce a computational result up to

some truth degree, while the latter produce the same result

with a truth degree that is equal to one. From these remarks it

is not difficult to see that the theorem holds true.

In general, it has been proved that P systems have the

computational power of Turing machines [2]. From this, it is

not difficult to see that for every fuzzy Turing machine there is

a P system that computes exactly the same numbers. However,

one should notice that cells respond to external stimuli in a

number of, sometimes unexpected, ways. In addition, it has

been shown that interactive computing systems are more

powerful than Turing machines [9]. Thus, if we allow P

systems to freely interact with their environment (e.g. by

replacing multiset rewriting rules with ‘stream rewriting’ rules

that affect the number of elements in any given compartment),

then one might expect to get conceptual computing devices that

are more powerful than Turing machines. Needless to say is that if

the previous expectation turns out to be true, the fuzzy version of

such P systems will be more powerful than fuzzy Turing

machines. Clearly, these are just speculation, but we hope to

have concrete results in the near future (see [24] for an

overview of the work that has been done so far).

Let us fuzzify everything! Depending on how we interpret

P systems with fuzzy data, a P system with both fuzzy multi-

set rewriting rules and fuzzy data can be viewed as a compu-

tational device that halts to a certain degree and, in addition,

computes a particular integer to some degree. On the other

hand, if we assume that the outcome of the computation is a

real number, then such systems just halt to a certain degree.

We are not sure whether P systems with both fuzzy data and

fuzzy multiset rewriting rules are really interesting as models

of computation, but we believe that they should be of use in

the modeling of living organisms.

6. CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

Uncertainty is an inherent property of all living systems.

P systems are models of computation inspired by the way

the cell lives and functions. Thus, it is more than necessary

to introduce uncertainty in models of computation that are

based on biological systems. In this paper we have reported

the results of our endeavor to fuzzify P systems (i.e. to intro-

duce uncertainty in a well-established model of natural

computation). In particular, we developed the theory of

multi-fuzzy sets and presented the notion of a fuzzy multiset

rewriting rule in order to define P systems with fuzzy

components (i.e. fuzzy data and/or fuzzy multiset rewriting

rules). In addition, we observed that if one skips the defuzzi-

fication process, which is not really necessary in all cases, the

resulting P systems with fuzzy data are capable of computing

real numbers, in general. Thus, P systems enter the realm of

hypercomputation in an unexpected way. Also, it has been

shown that P systems with fuzzy multiset rewriting rules

are equivalent to fuzzy Turing machines. Furthermore, the

idea of P systems with both fuzzy data and fuzzy multiset

rewriting rules was briefly discussed.

\Hypercomputation is about ways to refute the Church–

Turing thesis by constructing new models of computation

that can solve classically unsolvable problems. The fact that

P systems with fuzzy data can be used to compute real-

numbers is definitely not an indication that these systems

refute the Church–Turing thesis. However, they provide a

solid ground for further developing the theory in order to see

what are the deeper implications of these new definitions. On

the other hand, the fact that fuzzy computability is practically

equivalent to crisp computability is yet another reason why P

systems with fuzzy data deserve a deeper study.
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