
SIGCUE OUTLOOK 25 Vol. 27 #1 January 1999

New Technologies
for Rapid Development

of Web Orientated Database Applications
Nick Hatzigeorgiu and Apostolos Syropoulos

Abstract

Many new Internet technologies are
available to Web programmers. Using
these technologies it is now easy to
develop dynamic Web based
applications that use databases. We
describe some of these new
technologies and we briefly present
two examples showing how we can
use these technologies in real world
applications.

1. Introduction

The development of the Hypertext
Markup Language (HTML) and the
Web browser has spurred a
tremendous growth of the Internet
over the past 5 years. Many traditional
multimedia or database developers are
now interested in programming for the
World Wide Web. Our personal
experience leads us to believe that such
applications can be useful in
educational environments. Further-
more, using the latest Web
technologies it is quite easy for the
inexperienced programmer to develop
dynamic Web applications.

HTML is an interpreted markup
language based on tags within regular
ASCII text. The Web browser
contains an interpreter for this
language and a viewer for the resulting
formatted text. The HTML documents
(Web pages) are being kept on a Web
server. The Web server and browser
communicate with each other using the
HTTP protocol. The client-server
model of the H'YI'P protocol is simple:
the client requests a document, the

server sends the document to the client
and closes the connection.

The simplicity of the original form of
both the HTML language and the
cfient-server model of the HTTP
protocol are largely responsible for the
success of the Web. Almost everyone
can write Web pages. However, this
simplicity is also the major problem in
developing Web applications. Some of
the original handicaps are

HTML is a markup language, not
a programming language. It
doesn't even offer some type of
loop construct.

H'YrP requests from the client
can only be for "whole"
documents, not for "chunks" of
data. Thus, the client can only
show or change a whole
document, not parts of it.

HTTP is stateless. After the
server has fulfilled a client
request, no memory of the
transaction is being kept.

Obviously, it is quite difficult to
develop dynamic Web applications
under these restrictions. "Dynamic"
has a two-fold meaning within this
paper: "dynamic content" and
"dynamic user interface".

Dynamic content is contrasted to the
static content of the regular Web
pages. It can be the result of an
interaction with a database of some
short, which leads to the construction
(on the fly) of an HTML page.

SIGCUE OUTLOOK 26 Vol. 27 #1 January 1999

Usually this is achieved by server-side
programming techniques. Till very
recently, the only way of achieving
dynamic content was the use of CGI
scripts on the server. This is a valid
technique but somewhat difficult to
learn. Also, it posses a higher
performance tax to the Web server that
the alternatives we are describing later
(this is because the server has to
initialize a new process for every CGI
script it is running).

A dynamic user interface is one that
allows the user to do something more
than flipping though Web pages. It is
the result of client-side programming.
The classical way to do this was the
use of a scripting language such as
Java. In this case the source code is
transmitted to the client where it is
interpreted by a Java compiler that
resides on the client. The only
alternative was the use of precompiled
Java applets that run on the client.

In our opinion, CGI scripts on the
server-side and Java scripts and
applets on the client side can achieve a
lot towards dynamic Web applications
but they have a stepper learning curve
that the technologies we will describe.
Furthermore, they pose some
restrictions that are the result of
security concerns. However, there are
cases, such as the development within
the bounds of Intranets or educational
establishments, were those security
constraints are not necessary or even
desirable. (This is especially true when
the developer of those applications
also belongs to the team of the local
network managers!)

1. Client Side Programming

HTML has grown considerably since
its first implementation. The original
HTML language, developed by Tim
Berners-Lee, allowed only hyperlinks

and some basic formatting of ASCII
text. Later we have the addition of
forms (which allow the client to
transmit data to the browser), tables,
scripts and frames. Scripts allow us to
use an interpreted high level language
(such as JavaScript or Visual Basic
Scripting Edition) on the client,
provided that the client includes the
necessary interpreter for the scripting
language. Frames allow us to view
simultaneously more than one
hypertext document and consequently
give us the ability to change only a part
of the viewable area (which, however,
remains a discrete document).

Nowadays, the World Wide Web
Consortium (W3C,
http://www.w3.org) is responsible for
the standardization of the HTML
language. The latest W3C Recom-
mendation is HTML 4.0 (sometimes
its also called Dynamic HTML,
DHTML) [1]. It is composed of
various dements and, among else,
provides us with two powerful
programming tools:

Cascade Style Sheets (CSS). CSS
allow the programmer to format
the hypertext documents in a more
flexible way than ever before. It is
a presentation tool, useful for a
better aesthetic appeal of our
applications.

The ability to "name" and
manipulate each and every tag.
These names can be used to
change the various properties or
the content of the document while
the client is viewing the document.
For example, we can hide or show
text and pictures, we can change
parts of the document when the
user performs some action (such
as moving the mouse over an
object) and much more. Practically
every tag in our document
becomes a named object and can

SIGCUE OUTLOOK 27 Vol. 27 #1 January 1999

be manipulated using client side
scripting.

Here, we have to point out that the two
most popular Web browsers today,
Netscape Navigator and Microsoft
Intemet Explorer (I.E.), have
implemented dynamic content in non-
compatible ways. Furthermore, they
provide interpreters for different
languages: Navigator supports
JavaScript while I.E. supports Jscnpt
(derived from Java) and VBScript [2]
(derived from Visual Basic). Thus it is
possible that some dynamic Web
pages work fine in one browser and
do not work at all when viewed by
another browser. There is some hope
that this will soon end, since the next
generation of both browsers will
probably support the HTML 4.0
standard. Also, the recent
standardization by W3C of
ECMAScript, (proposed by both
Netscape and Microsoft) will provide
us in the future with a Java-like
scripting language that all browsers
can understand.

Beyond HTML and scripts, the
programmer has in his/her disposal
another useful element of dynamic
client-side content: precompiled
objects. These can be either Java
applets or ActiveX controls. ActiveX
controls are objects based on
Microsoft's COM technology. They
currently work only with I.E. and
some very useful ones (e.g. providing
database access) are already included
with the I.E distribution (for more
information on the use of the
technologies that I.E. provides, see
[3]). If the developer wants to create
some other ActiveX controls he can
easily do that using most of the RAD
tools (e.g. Visual Basic, C++,
Delphi). If a developer includes an
ActiveX control in a Web page and the
client browser doesn't have this

particular control, the browser will
automatically download the control.

It is now evident that the Web
application developer has to make
some hard choices at the planning
stage of his project. There are many
kinds of dynamic client-side content
but those that are the most useful or
necessary can only be determined by
the particular requirements of every
project. The first question that every
developer should ask is whether he
can forego the inclusion of any
dynamic client side content at all. The
existence of new technologies such as
Java, applets, CSS, VBScipt et. al.
does not mean that we have to use
them when we don't need them! It is
also important to remember that most
of the older browsers do not support
some (or all!) of those technologies.
Finally, we have to consider the
performance penalty our application
might suffer due to object downloads.

If the developer decides that he/she has
to use some kind of dynamic client-
side content, then he/she has to
consider what the audience is.
Sometimes, it is known in advance
that the audience will be using a certain
type of browser and this makes things
easier. For example, in one of our
projects we knew that all the clients
were high schools using I.E. So we
decided to use VBScript and standard
ActiveX controls. This allowed us to
deploy our application sooner than if
we had to use Java applets and/or
strictly server side programming.

1. Server Side Programming

Server side programming can
provide us with dynamic content,
usually in conjunction with a database
residing on the server. When the client
requests a document, the server runs a
script, performs a query on the

SIGCUE OUTLOOK 28 Vol. 27 #1 January 1999

database ff this is required and then
formulates an HTML page which is
transmitted to the client via HTI'P.

Server-side programming
depends on both the platform and the
particular Web Server we are using.
Sometime ago, most Web servers
were running on Unix and server-side
programming meant a CGI script
(probably written in Perl). However,
the Windows NT platform is now a
viable alternative and it is often easier
to use. Furthermore, there are plenty
of Web servers available, both for
Windows NT and Unix, and each of
them provides different tools and
technologies to the developer.

Again there are some choices
that have to be made during the
planning stage of a project, namely
what the operating system and what
the Web server will be. Here we will
focus on some tools that are available
on Windows NT using the Internet
Information Server version 4.0 (IIS)
[4], which is available free of charge
from Microsoft
(http://www.microsoft.com). The
latest version of IIS includes the
Active Server Pages (ASP)
technologies [5]. Writing ASP pages
is simple: we just write our regular
HTML (or DHTML) and we include
some server-side code (e.g. in
VBScript or Jscript). The server
executes the script, constructs an
HTML page and sends it to the client.
This sounds like CGI scripts, but there
are many differences. ASP pages are
faster to run than CGI scripts (the Web
server doesn't create a separate
process for each ASP script), they are
easier to write (we can write the
HTML part in the usual way) and,
most of all, they provide us with
plenty of build-in functionality.

ASP is composed of several
server-side objects that can be used by

the programmer. For example, there is
the "application object" that can store
application-wide variables, objects and
procedures (an application, in this
context, consists of all the web pages
that reside in a particular directory).
There is also the session object. A
session begins when a user requests
any. page of the application. Many
sessions can be opened
simultaneously, depending on the
number of users that are connected to
our application. Using the' session
object we can store and retrieve
information for events, keeping track
of the state of the application and thus,
partially overcoming the "stateless"
property of the HTTP protocol.
Finally, another group of objects we
have in our disposal is the ActiveX
Data Objects (ADO) and their database
functionality.

In general, there are two kinds
of relational databases: single-user
(such as Access, Paradox etc.) and
multi-user (such as Oracle, SQL
Server etc). Intemet applications are
inherently multi-user applications but
nothing prevents us from using single-
user databases in situations when we
know that we won't have too many
simultaneous users (for example,
when a database is accessed only by a
small workgroup). Using ADO makes
it is easy to build tree-tiered database
applications where the Web server
(ASP) plays the role of the middle-tier
and the Web browser is the cfient front
end. The Web server can communicate
with the database through the ODBC
(Open Database Connectivity) using
the ADO build-in objects. The front
end communicates with the Web
server through H'vrP using HTML
forms (or even ActiveX objects or
Java applets).

Let us give a simple example to
show how easy this is. Suppose we
have in our server an Access database

SIGCUE OUTLOOK 29 Vol. 27 #1 January 1999

called "schools" and we want to
retrieve and present the field "names"
from a table called "students" which
resides in the database. First, we

create an ODBC System Data Source
(System DSN) giving it a name (here
the name will be "schools". Then we
create the following ASP code:

<%
set StudentsConn = server.CreateObjectCADODB.Connection")
StudentsConn.Open "schools"
Set RS =Server.CreateObjectCADODB.Recordset")
sql="SELECT names FROM students"
RS.Open sql, StudentsConn
%>
<HTML><HEAD></HEAD>
<BODY>
These are the student names:
<% Do while Not RS.EOF %>
<%=RS("names")%>
<% RS.MoveNext
Loop
RS.Close
StudentsConn.Close%>
<]BODY></HTML>

As we see, the Visual Basic
code resides within "<%" and "%>"
tags. The code is simple to read: we
open a connection with the database,
we send an SQL query and then we
present the resulting recordset using a
"While...Loop" construct. Practically,
what we do in ASP is to use a
combination of HTML code
interwoven with VBScript (or Jscfipt)
code.

2 . Remote Data Services (RDS)

The techniques we have
mentioned so far address most of the
original limitations of the HTML-
HTTP model, except one: we cannot
perform a query to the database
(resulting probably in an interactive
modification of the displayed data)
without reloading the whole page.

The Remote Data Service
(RDS,
http ://www. micro soft. com/data/rds/)

objects, included with I.E. 4.0 and IIS
4.0, address this issue. Using these
ActiveX objects, the server can send
some data to the client, the client can
perform some modifications to the data
and the changes can be saved in the
server's database without having to
reload the page at all! It is obvious that
using RDS we come very close to the
regular three-tiered client-server model
used to access databases, only that
now we don't have to install a front-
end to the client since all the necessary
objects are included in the I.E.
installation.

RDS technology includes both
server-side and client-side components
and requires the synergy or many of
the technologies we discussed so far:
IIS, ActiveX, client and server-side
scripting, ADO, ODBC. All of these
technologies must be present which
means that we have to be using
Windows NT with IIS for a Web
server and IE 4.0 (or later) as the client

SIGCUE OUTLOOK 30 Vol. 27 #1 January 1999

browser. When we use RDS, we
include an invisible Advanced Data
Connector (ADC) AcfiveX control in
our ASP page and then we use its
methods to access the data, present,
manipulate or update it, without
having to conduct any reloading of the
pages.

3 . D e v e l o p m e n t Cons idera t ions
and E x a m p l e s

It is obvious that the manager
of every Web application project has to
make some important choices at the
very beginning of the project. Those
concern both the development platform
and the technologies to be used. The
managers have to take into account the
in-house skills, the specific
requirements of each project, and the
target audience. Of course, this is true
in the development of any client-server
appfication, with the exception of
having to take into account the extreme
speed of evolution of new Web
technologies. Just a year ago, RDS
was not an option, and right now we
have no browsers with complete
HTML 4.0 or ECMAScript support
although this might change six months
from now.

We have successfully applied
some of the above technologies in two
of our projects. Both projects need
about another year to complete but
they are already functional. The fact
that they are long-term, non-
commercial projects influenced our
decisions.

The first project involves the
development of a database filled with
regional data, both for scientific and
public use. At the beginning of the
project we chose to develop in Access
because of easy of use and integration
with MS-Word. The writers and

researchers filled special forms in MS-
Word which were processed by scripts
and macros in Visual Basic to extract
the information that filled the Access
database tables. A simple Web
interface was developed to access this
data. During the project it became
evident that we need Unicode data
types for some fields, so we are
planning an upsize to MS-SQL Server
7.0 by the end of the year. We have
already experimented with a partial
upsize and it has posed no special
problems either to the database or to
the interface, since we have been using
ODBC calls with standard SQL
statements.

For this project we knew that
the initial transaction volumes would
be low, so using an Access database
was sufficient, at least for the
beginning. We also knew that the
researchers who would be using the
interface worked in a variety of
platforms and that it would eventually
become public, so we decided to use
nothing more than HTML 3.2 (HTML
forms and tables). On the server side
we have the freedom to use any
platform we liked, so we choose
Windows NT 4.0 with IIS 4.0 and
Visual Basic server-side scripting
(ODBC and ADO).

The second project involved
the creation of a small database and an
interface to be used as a pilot project in
some public schools. The interface
would be used to teach some aspects
of the Greek language to students and
people with almost no computer skills
should be able to benefit from it. Also,
it had to include some kind of bulletin
board where students of different
schools could pose questions and get
answers concerning the teaching
material.

For this project we knew that
the schools had Windows NT LANs

SIGCUE OUTLOOK 31 Vol. 27 #1 January 1999

and were using IE 4.0 as a Web
browser and that only these particular
schools would use the interface (it
wouldn't become public). Also that the
schools would prefer a simple to use
but attractive interface. So we decided
to use the full spectrum of
technologies we described along this
paper. The database was developed in
MS-Access and we used ODBC calls.
We developed an MS-Access Web
interface for the teachers to enter
student-related data into Access
(students' names and groups) using
HTML 4.0. The user interface
accessed by students used DHTML,
RDS and ActiveX objects.

4. Conclusions
The development of Web technologies

continues with an unprecedented
speed, even by computer industry
standards. The Web application
developer has plenty of technologies in
his/her disposal today and even more
Web technologies are considered for
standardization (such as XML, see
[6]). There are still major problems
such as the incompatibility of the
various Web browsers, the relative
immaturity or some of these
technologies and the absence of
satisfactory debugging tools or even
development tools (a simple text editor
like notepad remains the best
development tool for creating
complicated scripts). Yet, despite
those problems, using the latest
available technologies can often make
a difficult project much easier.

Bibliography

1. Elizabeth Castro, HTML 4 for the World Wide Web: Visual QuickStart Guide,
Addison-Wesley 1998.

2. Paul Thurrott and Nolan Hester, VBScript for the World Wide Web, Addison-
Wesley 1997.

3. Alan Simpson, Official Microsoft Internet Explorer Site Builder Toolkit,
Microsoft Press 1997

4. Microsoft lnternet Information Server Resource Kit, Microsoft Press 1998
5. Brian Francis, et al., Professional Active Server Pages 2.0, Wrox Press Inc.

1998.
6. Scott Mace et al., Weaving a Better Web, Byte (International Edition), March

1998, pg. 58.

Author Contact Information

Nick Hatzigeorgiu, Ph.D.
Xanthi Branch
nikos(~xanthi.ilsp, gr

Institute of Language and Speech Processing
Vas. Sofias 8 671 00 Xanthi

Apostolos Syropoulos Department of Civil Engineering
Democritus University of Thrace 671 00 Xanthi
apostolo@obelix.ee.duth.gr

Greece

Greece

